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Chapter 1 Introduction 
 

1.1 A brief historical survey of MRI 

Since William Roentgen first discovered the x-ray phenomenon in 1895 1 medical 

imaging techniques have become an irreplaceable tool in the diagnosis, prediction 

and treatment supervision of diseases. Thereby, magnetic resonance imaging (MRI) 

is recognized as one of the most important advances in medicine of the last century. 

It has revealed non-invasively three-dimensional anatomical information of the 

human body with a level of detail that would have been unimaginable only decades 

ago. 

Looking back to the origin of MRI, the synergy between nuclear magnetic resonance 

(NMR) chemistry and x-ray imaging has laid the foundations for the development of 

MRI. NMR is a property of magnetic nuclei with an angular and magnetic moment in 

an external magnetic field where they absorb or irradiate electromagnetic energy at a 

certain frequency. This phenomenon was first observed by Edward Purcell, and 

independently Felix Bloch who, therefore, were both awarded with the Nobel Prize for 

Physics in 1952 2-3. Interest in the potential of NMR for medical diagnostic purposes 

began in 1971, when Raymond Damadian studied the differences in relaxation times 

between normal and cancerous tissue 4. In 1973, Paul Lauterbur presented a 2-

dimensional NMR image of a water-filled structured object. Being familiar with 

projection-reconstruction techniques used in computerized tomography (CT), 

Lauterbur could reconstruct this cross-sectional image out of a number of 1-

dimensional NMR measurements each obtained under a linear field gradient with a 

different direction. This process was first described as “Zeugmatography” 5, meaning 

“that which joints together”, namely static magnetic fields and radiofrequency (RF) 

fields for imaging. Paul Lauterbur was awarded the Nobel Prize for medicine in 2003 

together with Sir Peter Mansfield, another pioneer in MRI. Thus, the synergy between 

NMR and x-ray imaging has led to a remarkable diagnostic tool, which has 



10 
 

experienced a rapid and siginificant technical advancement and has had an 

enormous impact on the practice of medicine.  

The first clinical MR systems were installed in 1983 at low field strengths of 0.35-

0.5 Tesla (T) 6, followed by the development of 1 T and 1.5 T magnets. Over the past 

25 years, these two have been the main field strengths in clinical settings. Over the 

last 10 years, 3 T MR scanners were introduced as a clinical modality. Increasing the 

magnet field strength has always been the driving force for improving the capabilities 

of MRI since the signal-to-noise-ratio (SNR) scales approximately linearly with the 

field strength. This makes it possible either to invest the increased SNR into reducing 

scan time or to obtain higher spatial resolution, for example. After the successful 

development of an 8 T MRI system at the Ohio State University in 1998, the first 7 T 

magnet was installed in the Center for Magnetic Resonance Research at the 

University of Minnesota in 1999, followed by the second 7 T system, which is in 

operation at the Massachusetts General Hospital in Boston since 2002. Numerous 

installations followed over the last decade, among them the 7 T system at the Erwin 

L. Hahn Institute for Magnetic Resonance Imaging in Essen in October 2006. 

Currently, there are approximately 40 research systems in operation worldwide. Due 

to strong inhomogeneities of the transmit B1 field at 7 T, for a long time the main 

focus of investigations was on the brain, where the artifacts were still acceptable. 

However, for the last two years more advances in whole-body imaging have 

facilitated the very first abdominal images at 7 T 7-9. 

Although even higher magnetic field strengths of 9.4 T 10 and higher are currently 

explored, 7 T seems to have become a standard in human whole-body MR research. 

The 7 T magnets with a 900 mm bore allow the use of standard clinical gradient coils 

and other components of the technical periphery. They are becoming generally more 

affordable and active-shielded magnets have been recently introduced which solve 

limitations in finding suitable sites and building costs, since they must otherwise be 

surrounded by enormous amounts of steel for passive magnetic field shielding. For 

example in Essen, the steel shielding weighs 430 tons with wall dimensions in the 

thickest sections exceeding 50 cm. With the U.S. Food and Drug Administration 
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(FDA) currently reviewing patient use of 7 T MRI as well as the recent technical 

advances in whole-body MRI at 7 T 7-9, it is likely that 7 T will be considered for 

clinical diagnostics in selected applications in the very near future. 
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1.2 Principles of magnetic resonance imaging 

Spins and magnetization 

Atomic nuclei are composites of protons and neutrons which themselves composites 

of fundamental particles, quarks, which possess a quantum mechanical property 

called spin. Depending on the type of the particle, the spin or spin quantum number 

can take half-integer (fermions) or integer (bosons) values. In a classical view, the 

spin can be thought of as a rotation of the particle around some axis. All quarks are 

fermions and neutrons and protons are each made up of three quarks (neutron: one 

up-, two down-quarks; proton: two up-, one down-quark), resulting again in a spin-½ 

system. Hence, all atomic nuclei with an odd number of protons and neutrons, which 

is roughly two-thirds of all stable atomic nuclei, possess a non-zero spin angular 

momentum S. Since quarks are electrically charged particles (e.g., the up-quark has 

a charge of +2/3 e; the down-quark of –1/3 e), the neutron or proton spin can be 

thought of as leading to a circulating electric current, and, hence, an associated 

magnetic moment 

 µ�⃗ = γS�⃗ . (1.1) 

 

The proportionality constant γ is called the gyromagnetic ratio and depends on the 

nucleus. Due to its huge abundance in humans, the hydrogen nucleus 1H is an ideal 

candidate for MRI. For 1H, γ or more commonly known γ = γ
2π

 has a value of 

42.58 MHz/T.  

As a consequence of the non-zero spin momentum, these atomic nuclei possess 

potential energy in a magnetic field and magnetic resonance can be observed. 

According to quantum mechanics only discrete energy levels are allowed. In an 

external magnetic field of flux density B��⃗ 0, by convention applied along the z-direction, 

a nucleus with spin quantum number S may assume 2S + 1 discrete energy levels, 

called eigenstates 
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 Em = −γħB0m (1.2) 

 

with the reduced Planck’s constant ħ = h/2π = 1.055∙10 -34 Ws2 and magnetic 

quantum number m (−S ≤  m ≤  S). As shown in Fig. 1.1, the magnetic field causes 

Sz to be aligned either parallel or antiparallel to B��⃗ 0, and, hence, each eigenstate 

corresponds to a precession of the magnetic moment µz = γSz around the z-axis at a 

fixed angle. The energy difference between two possible eigenstates is 

 ħω = Em−1 − Em = − γħB0 (1.3) 

 

which is the resonance condition. The characteristic precession frequency of the 

magnetic moment of the nucleus ω = γB0 is called the Larmor frequency. 

 

Fig. 1.1 – Left: Orientations and precessions of a spin S = ½ in a magnetic field B0. 
Right: Energies of a spin S = ½ as a function of B0, where, according to equation 
(1.2), the eigenstate with a magnetic moment parallel to B0 has the lower energy. For 
a quantum transition, ∆𝐸 has to be added or subtracted in form of electromagnetic 
quanta ħω. 
 

Since nuclei do not occur as single spin systems but as large entities, the occupancy 

N of eigenstates can be described by Boltzmann statistics 

 
Nm−1

Nm
= e−

ħω
kT (1.4) 
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with k being the Boltzmann’s constant, k = 1.38 ∙ 10−23 WsK−1. Hence, there are 

more spins aligned parallel to B��⃗ 0, resulting in a small but measurable macroscopic 

magnetic moment along B��⃗ 0. This equilibrium magnetization is called longitudinal 

magnetization, which for 1H is given by 

 
M���⃗ 0 =

ργ2ħ2B��⃗ 0
4kT

 
(1.5) 

 

where ρ is the proton spin density. It is the maximum available magnetization for the 

formation of the MRI signal. 

 

Spin excitation and relaxation 

The longitudinal magnetization can be perturbed from equilibrium by applying an 

external, transverse RF field B��⃗ 1 with a rotational frequency that meets the resonance 

condition. Hence, individual spins in the system will undergo a state transition. If a B1 

pulse is applied for time τ = π/(2ω1), i.e. a 90° pulse, the magnetization vector will 

be rotated into the transverse plane x-y. For a realistic pulse time of τ = 1 ms, for 

example, the value of B1 can be calculated to 6 µT for a 90° excitation.  

The notation of the B��⃗ 1 field is commonly split up in a portion that rotates with the 

Larmor frequency along with the precession of the magnetic moment of the spin 

system (B��⃗ 1+) and a portion that rotates in the opposite direction (B��⃗ 1−) 

 B��⃗ 1+ =
B��⃗ 1,x + iB��⃗ 1,y

2
 (1.6) 

 B��⃗ 1− =
�B��⃗ 1,x − iB��⃗ 1,y�

∗

2
 (1.7) 

 

where 𝑖 = √−1. B��⃗ 1+, B��⃗ 1−, B��⃗ 1,x, and  B��⃗ 1,y are complex vectors and the symbol ∗ 
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indicates the conjugate of a complex quantity. B��⃗ 1+ is referred to as the local transmit 

RF field, and B��⃗ 1−∗ is referred to as the local receive field. 

After the excitation pulse, the magnetization M���⃗  starts to precess around B��⃗ 0 with ω0, 

meaning that the changing magnetic flux can induce a measurable voltage in a 

conducting loop, placed orthogonal to B��⃗ 0. This voltage is the MR signal, called free 

induction decay (FID), which decays after some time due to relaxation.  

The process of restoring thermal equilibrium of the magnetic moment M0 is called 

spin relaxation, which is determined by two time constants T1 and T2. The T1 time 

constant describes the recovery of the longitudinal Mz component of the 

magnetization vector, referred to as spin-lattice relaxation. Thus, energy is 

transferred from the spin system to its environment. The T2 time constant describes 

the decay of the transverse Mxy component of the magnetization vector, referred to 

as spin-spin relaxation. The spin-spin interaction describes the loss of phase 

coherence of spins as they interact with each other via their own oscillating magnetic 

fields. As a result, the precession of spins moves out of phase and the overall 

transverse magnetization is reduced. While T2 includes only irreversible causes of 

dephasing, magnetic field inhomogeneities and susceptibility effects cause variations 

in the local magnetic field experienced by nuclear spins which leads to a much faster 

dephasing, described by the time constant T2∗. T2 and T2∗ are related by the equation 

 
1

T2∗
=

1
T2

+
1
T2′

 (1.8) 

with T2′ being the characteristic time representing signal decay from local magnetic 

field inhomogeneities. As the system reaches equilibrium, the transverse 

magnetization will inevitably diminish to zero, and, therefore T2∗ ≤ T2 ≤ T1 always 

holds. 

There is a wide range of relaxation times in biological tissue, producing high levels of 

contrast and the different relaxation times involved enable one to clearly depict 

pathological areas. Additionally, relaxation times can be shortened dramatically by 
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introducing small concentrations of paramagnetic ions which expands the tools for 

medical diagnostics in MRI even further 11. 

For an in-depth description of spin dynamics and quantum mechanics the reader is 

referred to standard text books 12-13. 
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1.3 The RF System 

Transmitter and Receiver 

The task of the RF system is twofold. First, the RF transmitter (Tx) generates a B1 

field that rotates the magnetization of the spin system away from the B0 axis at an 

angle 𝛼 determined by the strength and pulse duration 𝜏 of the B1 field. Therefore, the 

Tx path of the MR system delivers amplitude and phase-controlled RF pulses to one 

or more RF antennas, called RF coils. The individual RF transmitter signals must be 

amplified to kW power levels by the RF power amplifier (RFPA) which consists of one 

or more RF driver stages and amplifiers as well as directional couplers for output 

power monitoring. The maximum power required for MRI scales as  

 
𝑃𝑚𝑎𝑥 ∝

𝛼2𝜔2

𝜏2
. (1.9) 

 

The second task is to pick up the signal of the excited spin system, which is 

performed by the receive system (Rx). When considering a rectangular RF pulse of 

constant amplitude and duration, the measured image signal intensity SI can be 

written as 

 SI ∝ ρ�B��⃗ 1−∗� sin�V�B��⃗ 1+�γτ� (1.10) 

 

with V being a dimensionless scaling factor proportional to the RF coil driving voltage. 

The Rx path consists of signal conditioning electronics, including low noise amplifiers 

(LNA), coil element selectors, RF receivers and automatic signal level adjustments. A 

large number of independent receiver channels for imaging based on RF phased 

array coils is advantageous. Array coils provide a superior SNR and allow for parallel 

acquisition techniques (PAT) to shorten image acquisition time 14-16. 

The SNR in a MR image is substantially influenced by the RF coil that receives the 

signals. In clinical MR systems, a volume RF transmit body coil generates the 

exciting B1 fields and dedicated RF receive-only coils pick up the signals from the 
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patient’s body. At 7 T, however, no such body coil is integrated into the system due 

to technical limitations and each local coil must include RF transmit and receive 

capabilities. Hence, components such as transmit/receive (T/R) switches, hybrids 

and preamplifiers may be included. 

 

The RF coil 

The RF coil generates a spatially dependent B��⃗ 1(r⃗) field by an electrical current (I) 

flow through a conductor. Strength and orientation of this field can be calculated 

using the law of Bio-Savart 

 B��⃗ 1(r⃗) =
µ0I
4π

�
dl⃗ × r⃗

|r⃗|3  (1.11) 

 

where r⃗ is the displacement vector in the direction pointing from the conductor 

element towards the point at which the magnetic field is being computed, the 

magnitude of dl⃗ is the length of the differential element of the conductor, and µ0 is the 

magnetic permeability constant in vacuum (µ0 = 4π ∙ 10−7 NA-2). 

For optimal transformation of RF power from the amplifier through coaxial cables into 

current through the conductors of the RF coil, impedance matching is mandatory; i.e., 

at the single frequency ω0 the conjugated impedance (Z*) of the amplifier matches 

the transformed impedance (Z) of the conductor, typically 50 Ω. Impedance is defined 

as the frequency domain ratio of the voltage to the current and can be split into a real 

part, resistance R, and a complex quantity, the reactance X. The resistance of the 

conductor consists of three parts: (1) the coil’s ohmic resistance RΩ that depends on 

conductivity, as well as length and cross-section of the conductor, including skin 

effects at high operating frequencies; (2) radiation losses Rr which increase with the 

fourth power of frequency and square of the coil’s area; and (3) tissue losses Rt that 

represent power being absorbed in conductive tissue due to B1 field-induced eddy-

currents and electric field displacement currents (rises approximately quadratic with 
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frequency). While the inductive tissue losses are principally unavoidable, dielectric 

losses are associated with the distributed capacitance of the RF coil and should be 

minimized in the design process. Due to this strong frequency-dependence of R, RF 

engineers face more challenges at high magnetic fields 17-18. The reactance can be 

capacitive (capacitance C), XC =  −(ωC)−1, or inductive (inductance L), XL = ωL, and 

when 

 𝜔 =
1

√𝐿𝐶
 (1.12) 

 

both reactances cancel each other out. The ability of reactances to transform 

impedances is used for impedance matching. 

The total impedance of a conductor Z = RΩ + Rr + Rt + iωL can be transformed to 

the impedance of the RF amplifier through a capacitive network using two capacitors 

as shown in Fig. 1.2. If a capacitor Ct is connected in parallel with the conductor, at 

some frequency ωa this parallel impedance Zp can be the desired impedance of 50 Ω. 

By adding another capacitor Cm in series with the conductor, the reactance of this 

serial impedance may annul the reactance of Zp at ωa, leaving simply to tune the 

parallel capacitor so that ωa is the Larmor frequency. Hence, Cm is commonly called 

the matching and Ct the tuning capacitor. 

  

Single surface coils offer high SNR but are limited in their field-of-view (FOV). This 

limitation can be overcome by deploying an array 19 of several surface coil elements 

with the signal of each element being independently fed into a separate receiver 

channel. This approach ensures that the high SNR of each array element is 

Fig. 1.2 – A matching network using 
two capacitors Cm and Ct to transform 
the coil impedance to any desired 
impedance, in particular to the 50 Ω 
impedance of the RF amplifier. 
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preserved while the array offers a much larger FOV. However, the phased array 

depends on minimizing coupling and thus of noise correlation and power dissipation 

among the elements of the array. When two RF coils are brought close to another, 

the alternating field of one coil can pass through the other, inducing an electromotive 

force with a voltage that depends, among other factors, on the degree of coupling k 

between them. The factor describing current in one coil and induced voltage in the 

other is termed mutual inductance M with M2 = k2L1L2, where L1 and L2 are the two 

inductances. Inductive decoupling by carefully choosing the optimal element overlap 

so that the total flux generated by coil 1 and induced into coil 2 is zero, is the most 

common technique to minimize k. 

 

RF heating 

According to Maxwell’s equations, a time-varying magnetic field B��⃗  is always 

surrounded by closed E��⃗  field lines: 

 ∇��⃗ × E��⃗ = −
∂
∂t

B��⃗  (1.13) 

 

For a homogeneous magnetic field B1 varying harmonically in time, equation (1.13) 

yields after integration over an arbitrary area 

 2πrE = −πr2ωB1 (1.14) 

 

The electric field E��⃗  causes eddy currents of density ȷ⃗ = σE��⃗  inside conductive tissue 

(conductivity σ), such as the human body, which amounts to a power deposition of 

 P = �σE2 dV =
1
4
σB12ω2 � r2 dV (1.15) 

 

in a volume V. The electric power losses are proportional to the B1 field and Larmor 

frequency squared (same as equation 1.9) and can create heat in the human body. 
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Given that tissue temperatures are normally not accessible during MRI examinations, 

the RF power absorbed per kilogram of tissue, termed specific absorption rate (SAR), 

is used to set safety limits for in vivo imaging. The SAR within the exposed tissue of 

density 𝜌 can be expressed as  

 SAR= 𝜎
𝜌
𝐸2 ∝ B12ω2 (1.16) 

 

Hence, doubling the magnetic field or pulse flip angle will quadrupole the SAR, 

introducing major limitations for MRI at high field strengths, especially for short high 

peak power 180° pulses as used in the workhorse for clinical imaging: the turbo spin 

echo sequence 20. 

National and international standards, for instance the IEC standard 60601-2-33 21, 

have been introduced to restrict the exposure of humans to RF heating by defining 

limits for the MR system. The SAR may not exceed 4 W/kg for body and 3.2 W/kg for 

head imaging. Local maxima in SAR (averaged over 10 g of tissue) are allowed up to 

10 W/kg for head and trunk and up to 20 W/kg for the extremities. 

Numerical simulations are used to describe the transmit RF field and its interaction 

with the human body. The most commonly used computational electrodynamics 

modeling technique for MRI is the Finite Difference Time Domain (FDTD) 22 

approach, which solves the discretized, time-dependent Maxwell equations on a 

regular grid of voxels in an iterative way until a steady state is reached. Realistic 

voxel models of the human body enable one to determine the complex SAR 

distribution within the exposed part of the body. Additionally, in the first place, the 

simulations assist in optimizing a RF coil design for a specific application. This is of 

special importance since the wavelength is significantly shorter at 7 T compared to 

clinical field strengths of up to 3 T, and, hence, interference effects become more 

pronounced, resulting in strong signal inhomogenities or even complete destructive 

interferences of the B1 field in some regions. Therefore, to obtain a homogenous B1 

field in the anatomical region of interest, with an amplitude sufficient large enough to 
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turn the magnetization with a desired angle away from B0, and to remain within the 

SAR limits is the biggest challenge for high field MRI with regards to the RF field. 

For more information on MR systems, its components and functionality the reader 

may be referred to 23-24. 
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1.4 Objective of this thesis 

The aim of this thesis is to develop and investigate new techniques for 7 T MR 

imaging of the human body, with a strong focus on clinically oriented imaging outside 

the brain. For most of the studies, novel RF coils for signal transmission and 

reception are developed, thoroughly characterized, and tested with specially 

optimized sequences. The potential of 7 T imaging is discussed in the context of in 

vivo images of healthy volunteers as well as patients with known pathologies. 

First, in chapter 2, a single loop coil is used to investigate 7 T MRI of the parotid 

gland and duct as an alternative to conventional sialography. Compared with 1.5 T 

images, it is demonstrated, that 7 T provides excellent image contrast and resolution, 

rendering very fine branches of the duct. An optimized scan protocol is proposed 

offering a non-invasive examination within 30 minutes. 

To facilitate large field-of-view imaging of the spinal cord with high spatial resolution, 

a novel RF phased array coil is presented in chapter 3. Large FOV imaging is 

important for assessing patients with metastases or multiple sclerosis lesions in the 

spinal cord, for example. The prototype is characterized in numerical simulations and 

bench measurements. In vivo images demonstrate very high resolution in fine 

anatomical details, rendering it a promising new application in 7 T clinical research. 

Since atherosclerosis causes high morbidity and disability worldwide, exploring the 

potential benefits of 7 T MRI to identify high-risk patients is obviously suggested. In 

chapter 4, a RF phased array coil for imaging the carotid arteries is introduced. The 

characterization of the coil is thoroughly described in numerical simulations, bench 

and phantom MR measurements. In vivo images reveal good signal excitation of both 

sides of the neck and a high vessel-to-background image contrast even without the 

administration of contrast media. 

Although MRI plays a leading diagnostic role in assessing the musculoskeletal 

system and imaging of the knee at 7 T has already been published early in 2006, 

there are still no RF coils present to cover most of the major joints. A multi-purpose 

RF coil for imaging the musculoskeletal system is presented in chapter 5, including 
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coil characterization and performance tests and a comprehensive safety assessment. 

High-resolution images of all major joints, especially of the thus far neglected elbow 

and shoulder joints, which have been imaged for the first time at 7 T, are given. 

Chapters 2 to 5 are in the form of already published work. All results and RF coils are 

currently used for further clinical studies 25-27 by the Department of Diagnostic and 

Interventional Radiology and Neuroradiology, University Hospital Essen. 

The last chapter provides a brief summary and discussion.  
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Chapter 2  High-resolution MRI of the human 
parotid gland and duct at 7 T * 

 

Abstract 

MR techniques have been reported as an alternative to conventional sialography. 

This study aimed to optimize sequences for high-field MR imaging of the parotid 

gland and duct, as well as the facial nerve at 7 T and show the potential of high field 

imaging in first in vivo images. 

A 10-cm-diameter loop coil was used to optimize various gradient echo (MEDIC, 

DESS) and spin echo (PD/T2, STIR) sequences to be subsequently tested on four 

healthy volunteers and four patients. High-resolution images were compared with 

1.5 T images both quantitatively (SNR, CNR) and qualitatively (visual rating). 

The high 0.6 mm isotropic resolution of the 3D DESS sequence was very useful for 

defining an oblique orientation with most of the duct being in-plane for subsequent 

imaging. With the MEDIC sequence, very fine branches of the duct were visible; 

furthermore, MEDIC yielded a very good depiction of lymph nodes. Severe SAR 

problems were observed with the STIR sequence at 7 T. Gland tissue in tumor 

patients can be well characterized with the PD/T2 TSE. Highest CNR between duct 

and gland was achieved with the 7 T DESS. At 1.5 T, only the STIR sequence 

showed comparable quality to the overall superiority of the 7 T sequences. The facial 

nerve could only be depicted close to the skull base. 

MR imaging at 7 T provides excellent image contrast and resolution of the parotid 

gland and duct. The proposed protocol offers a non-invasive examination within 

about 30 minutes. 

* Kraff O, Theysohn JM, Maderwald S, Kokulinsky PC, Dogan Z, Kerem A, Kruszona S, 

Ladd ME, Gizewski ER, Ladd SC. High-resolution MRI of the human parotid gland and duct 

at 7 Tesla. Invest. Radiol. Sep 2009;44(9):518-524  



29 
 

2.1 Introduction 

Lesions of the salivary glands can be a suspicious mass, calculi causing 

obstruction and inflammation, or a diffuse glandular enlargement. Pleomorphic 

adenomas represent nearly 80% of all benign parotid masses, followed by 

monomorphic adenomas and myoepitheliomas 1. Regarding obstructive or 

inflammatory lesions, sialolithiasis is a very common disease where calculi may occur 

within the main ducts or within intraglandular ductal tributaries. Sialadenitis may be a 

direct result from sialolithiasis due to poor outflow of saliva or may represent 

autoimmune inflammatory conditions. While X-ray sialography has been considered 

the standard of reference in assessing salivary gland diseases, it has certain 

drawbacks such as the use of ionizing radiation and invasive cannulation for contrast 

agent injection through the narrow ducts. Moreover, it is contraindicated in case of 

acute sialadenitis. In any case, the injection of contrast agents can irritate the duct 

and can force inflammatory products deep into the gland’s parenchyma 2. Due to its 

complex anatomy, the parotid gland is a challenging region for surgery. The relative 

position of abnormalities with respect to intraparotid components (parotid duct, its 

major tributaries, and facial nerve) must be assessed to avoid potential surgical 

complications.  

MR sialography has been reported as an alternative to conventional 

sialography 3. However, MR sialograms, while clearly demonstrating the main duct 

and primary branching ducts, often fail to demonstrate higher-order branches at 

clinically established field strengths (1.0 T) 4. This may be addressed by higher field 

strengths 5. High-field systems, especially 3 T, are more and more finding their way 

into clinical routine. Compared to 1.5 T, imaging at 3 T 6 theoretically improves the 

signal-to-noise ratio (SNR) by a factor of 2, which allows improving the spatial 

resolution or reducing the scan time without sacrificing signal- (SNR) and contrast-to-

noise (CNR) ratios compared to 1.5 T. 

Parotid gland tissue as well as tumors can be well evaluated by MR, including 

tumor infiltration into surrounding tissue. However, the depiction of the facial nerve, 

especially its intraparotid course, remains a challenge  7. 
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Moving from 1.5 T to 3 T, the sequences and scan protocols require 

adjustments for optimal image quality 8. Likewise, sequence parameters which have 

been optimized for MRI at 3 T or even 1.5 T cannot be transferred to 7 T without 

major modifications. Specific absorption rate (SAR) limitations, novel image artifacts, 

e.g. due to increased susceptibility effects, and different tissue relaxation times and 

contrasts necessitate adjustments of the sequence parameters. To our knowledge, 

no imaging of the parotid gland at 7 T has yet been reported. Therefore, our study 

aimed to optimize sequences for high-field MR imaging of the parotid gland, the duct 

and its tributaries, as well as the facial nerve at 7 T and show the potential of high-

field imaging in comparison to 1.5 T MRI in patients.  
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2.2 Materials and Methods 

Subjects 

Four healthy volunteers (all male, mean age 30.3 years) with no history of 

salivary gland disease underwent both 1.5 T and 7 T MRI examinations for the 

sequence optimization process. Subsequently, four patients with clinically diagnosed 

pathologies, corroborated with ultrasound, were included in this study: one 49-year-

old female patient was diagnosed with chronic parotitis, one 28-year-old female had 

recurrent, unknown swelling of the gland, one 68-year-old female reported with a 

pleomorphic adenoma, and a 44-year-old male had a cystadenolymphoma. Histology 

was performed routinely after surgical therapy in the two latter cases. The study was 

approved by the local institutional review board and all subjects gave written consent 

prior to the MR examinations at both field strengths. 

 

1.5 T examinations 

All 1.5 T examinations were performed on a Magnetom Espree (Siemens 

Healthcare, Erlangen, Germany) equipped with a gradient coil capable of 33 mT/m 

gradient strength and 200 mT/m/ms slew rate. A 17-cm-diameter linearly polarized 

loop coil (Siemens Healthcare, Erlangen, Germany) was used for signal reception 

and placed laterally against the head to cover the parotid gland. Triangular cushions 

helped to fixate the subject’s head and the coil for the duration of the examination. 

Images were obtained with manufacturer-provided gradient- (GRE) and spin-echo 

(SE) sequences, including a fat saturated, T2*-weighted multi-echo data combination 

(MEDIC) GRE sequence, a T2-weighted short TI inversion recovery (STIR) turbo spin 

echo (TSE) sequence, and a double-echo PD- and T2-weighted TSE sequence 

(Tab. 2.1).  
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7 T examinations 

High-field MR imaging was performed on a 7 T whole-body scanner 

(Magnetom 7 T, Siemens Healthcare, Erlangen, Germany) equipped with a high 

performance gradient coil (45 mT/m gradient strength, 200 mT/m/ms slew rate). Due 

to the absence of a body transmit coil at 7 T, a 10-cm-diameter transmit/receive 

single loop coil (Rapid Biomedical, Würzburg, Germany) was used for signal 

excitation and reception. The coil was placed close to the area of interest. 

The same sequence types used at 1.5 T were also used at 7 T; only the STIR 

sequence had to be excluded due to SAR restrictions along with very low contrast 

and insufficient image quality, probably due to incomplete inversion of the 

magnetization in regions of B1 inhomogeneity or strong susceptibility variations. 

Additionally, a 3D double echo steady-state (DESS) sequence was used at 7 T, as 

well as a T1-weighted 3D fast low angle shot (FLASH) sequence. The latter was 

used to image the facial nerve. Within the regulatory and technical limitations, flip 

angle, repetition and echo time, bandwidth, and number of slices were modified to 

obtain optimal image contrast (rated visually by a physicist and a senior radiologist), 

maximum coverage, and the highest spatial resolution within an acquisition time of 

less than 10 minutes per contrast. 

SAR scales approximately with the field strength squared and is the most 

restricting factor in 7 T MRI. Since T1 relaxation times increase with increasing field 

strength, this implies longer repetition times to keep SNR and CNR high. However, 

this also lengthens acquisition time. Therefore, a compromise between SNR, CNR, 

and examination time had to be made. 

All sequences of this protocol were optimized for 7 T in healthy volunteers first 

and subsequently tested in the four patients. All subjects underwent both 1.5 T and 

7 T examinations (protocols see Tab. 2.1) for comparison. Both examinations were 

performed on the same day. Despite optimization to visualize not only the glandular 

parenchyma and intraparotid duct but also the facial nerve, the facial nerve could not 
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be precisely depicted or followed in the healthy volunteer datasets. Hence, the focus 

of the study was subsequently set to image and analyze the duct and gland only.  

 
Tab. 2.1 – Final sequence parameters. For the 1.5 T STIR sequence, an inversion 
time of 160 ms was selected. Given is the not interpolated voxel size. 

 

Image Analysis 

Signal-to-noise ratios (SNR) were calculated for duct, gland, and surrounding 

muscle as well as for lymph nodes in the healthy volunteer data. Additionally, 

contrast-to-noise ratios (CNR = SNRA - SNRB) were calculated between duct (SNRA) 

and surrounding tissue (SNRB). Since diverse pathologies were included, this 

analysis was not performed in the patient data.  

Two senior radiologists were asked to perform a visual evaluation of the 

overall quality using a five-point scale (from 1 = uninterpretable to 5 = very good) for 

both the 1.5 T and 7 T images of all eight subjects. The evaluation included 

delineation of duct and lymph nodes against surrounding tissue, homogeneity of the 

duct, and depiction of the glandular parenchyma. The mean grades of both readers 

were used in the subsequent comparisons. 

 TR 
[ms] 

TE  
[ms] 

slices alpha 
[°] 

matrix voxel size 
[mm3] 

BW 
[Hz/px] 

TA 
[min:sec] 

MEDIC 7T 1540 15 39 30 512x512 0.35x0.35x1.5 326 9:53 
MEDIC 1.5T 1130 25 39 30 256x256 0.60x0.60x3.0 178 7:15 

PD/T2TSE 7T 3500 42/111 12 150 512x512 0.35x0.35x1.5 178 6:06 
PD/T2TSE 1.5T 3710 34/101 30 150 256x256 0.70x0.70x3.0 130 3:54 

3D-FLASH 7T 7.0 3.1 104 10 320x320 0.60x0.60x0.60 200 4:40 

DESS 7T 14.2 5 160 30 256x256 0.60x0.60x0.6 250 5:47 

STIR 1.5T 4300 56 20 150 256x256 0.70x0.70x3.0 120 6:11 
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2.3 Results 

None of the volunteers or patients experienced any clinically relevant side 

effects, and all eight subjects completed both 1.5 T and 7 T examinations. Tab. 2.1 

shows the optimized parameters of all sequences at 7 T and compares them to the 

parameters used in the 1.5 T protocol. The total examination time of the 7 T protocol 

is approximately 30 minutes, including 2 to 3 minutes for proper adjustment of 

frequency, transmitter voltage as well as 3D shim, which had to be performed 

manually prior to each examination. 

 

Protocol Optimization at 7 T 

In order to clearly distinguish between duct and gland with the 3D DESS 

sequence, repetition time (TR) and echo time (TE) were set to 14.2 ms and 5 ms, 

respectively. Since SAR is linearly proportional to the radiofrequency bandwidth, it 

could be reduced significantly (by a factor of 3) using a narrowband pulse for water 

excitation. This allowed a flip angle α of 30°. Furthermore, background signal from 

the muscle was reduced. A high isotropic resolution of (0.6 mm)3 proved very useful 

in finding an adequate oblique orientation for the subsequent sequences with most of 

the duct being in-plane. Also, as stated in previous investigations at 1.5 T, this 3D 

steady-state sequence was able to reveal the relationship between the ducts and the 

intraglandular tumor 9. Hence, the DESS sequence was acquired at the very 

beginning of our imaging protocol. 

For the 2D MEDIC sequence, a frequency selective fat suppression pulse 

reduced the fat signal component of the gland, which resulted in an increase of CNR 

between duct and gland of around 30%. Due to a relatively long TR of 1590 ms and 

small flip angle α = 30°, there were less severe SAR problems (compared to TSE, 

see below) and thus fewer coverage restrictions despite the use of the additional pre-

saturation pulse. Aligned according to the best orientation found with the DESS 

sequence, 39 slices could be acquired with a resolution of 0.35 x 0.35 x 1.5 mm3.  
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Due to the large refocusing flip angle of 150°, SAR was a major issue for the 

double-echo TSE sequence, limiting the maximum number of slices per acquisition. 

Hence, the variable-rate selective excitation (VERSE) 10 pulse was selected, which 

significantly reduced the energy deposition without any noticeable trade-offs in image 

quality. However, two measurements (12 slices each) were still needed for complete 

coverage. A turbo factor of 5 was used, and two echoes were read out at TE = 28 ms 

and 111 ms. The first echo yielded an intermediate PD-weighted contrast with the 

saliva being hyperintense. Background signal from muscle and glandular tissue was 

further reduced with the second, heavily T2-weighted echo. 

In three out of four healthy volunteers, the facial nerve could presumably be 

depicted extracranially close to the brain stem with the 0.6 mm isotropic 3D-FLASH 

sequence at 7 T as a hypointense structure surrounded by hyperintense fatty tissue 

(see Fig. 2.1). However, the two radiologists were not in all cases convinced that it 

was indeed the nerve that had been depicted, and even more important, the nerve 

could not be followed with sufficient confidence into the parotid gland. Within the 

glandular parenchyma, confusion with vessels is hard to eliminate since both 

structures, the nerve and some vessels, appear dark in the FLASH. With the other 

sequences or at 1.5 T, it was either much more difficult or not at all possible to 

delineate the facial nerve. 
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Quantitative Image Analysis  

At 1.5 T, the SNR measurement of the duct was not possible in one out of four 

healthy volunteers with the MEDIC sequence and in all four volunteers with the 

PD/T2 TSE sequence. The duct was either too small or could not be identified at all. 

The 7 T DESS sequence yielded by far the highest SNR of the duct and lymph nodes 

among all sequences. In a direct comparison between 7 T and 1.5 T, the MEDIC 

sequence at 7 T showed 3.2 times higher SNR of the duct and 1.9 times higher SNR 

of the lymph nodes, while 1.5 T STIR yielded the highest SNR of the duct and lymph 

nodes among all 1.5 T sequences. Comparing the PD/T2 TSE sequence at both field 

strengths, lower SNR values were found at 7 T for lymph nodes, gland, and muscle. 

All SNR values are provided in Tab. 2.2. 

  

Fig. 2.1 – Sagittal view of the T1-
weighted 3D-FLASH sequence 
acquired in a healthy volunteer at 
7 T. Presumably, the facial nerve is 
shown as a hypointense trunk 
surrounded by fatty tissue (arrow). 
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  SNR 
duct 

SD SNR 
LN 

SD SNR 
gland 

SD SNR 
muscle 

SD 

MEDIC 7T 96.4 13.2 67.5 19.7 17.1 6.5 67.3 16.7 

MEDIC 1.5T 30.6 7.0 35.6 7.0 17.9 5.7 25.0 6.0 

PD TSE 7T 62.0 13.4 55.8 12.7 40.3 8.4 48.4 5.1 

PD TSE 1.5T na na 65.5 23.3 65.3 5.7 38.1 6.7 

T2 TSE 7T 43.0 13.2 20.0 7.4 12.2 1.1 5.2 0.8 

T2 TSE 1.5T na na 40.7 11.7 36.3 2.2 12.5 1.3 

DESS 7T 297.9 90.7 105.7 18.7 42.6 19.6 122.7 12.4 

STIR 1.5T 73.6 36.9 74.2 21.5 37.2 14.2 21.5 12.5 

 
Tab. 2.2 – SNR evaluation. Given are the SNR values of duct, lymph nodes (LN), 
gland and muscle together with their corresponding standard deviations (SD). The 
SNR values are not corrected for different voxel sizes, i.e. there is a six- to eight-fold 
higher resolution at 7 T compared to 1.5 T. 

 

Highest CNR values between duct and gland (255.3 ± 98.2) as well as muscle 

(175.2 ± 99.2) were achieved with the 7 T DESS sequence, while comparable CNR 

values between lymph nodes and gland were found in both 7 T DESS (63.1 ± 9.9) 

and 7 T MEDIC (50.4 ± 15.4). In a direct comparison, the MEDIC yielded 5.4 times 

higher CNR between duct and gland at 7 T than at 1.5 T. For the CNR between 

lymph nodes and gland, the ratio was 2.9 times higher at 7 T. Within the 1.5 T 

protocol, the STIR sequence yielded the highest CNR values. Despite the lower SNR 

at 7 T for the PD/T2 TSE than at 1.5 T, the CNR between lymph nodes and gland 

remains the same at both field strengths. Fig. 2.2 shows the results of the complete 

CNR evaluation. 
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Fig. 2.2 – Comparison of CNR values calculated between duct and gland, duct and 
muscle, as well as lymph node and gland. 

 

Qualitative Image Analysis 

The visual assessment of image quality over all eight subjects yielded 

superiority of the 7 T sequences compared to their 1.5 T counterparts as shown in 

Tab. 2.3, significantly higher ratings were consistently achieved with the 7 T 

sequences. Only the 1.5 T STIR sequence showed comparable quality. Regarding 

delineation of the duct, 7 T MEDIC, 7 T T2 TSE and 7 T DESS were all rated best 

(4.7), while in the 1.5 T PD and T2 TSE images the duct could hardly be found (1.0 

and 1.7, respectively). The same result was found for the homogeneity of the duct 

(see Fig. 2.3), where 7 T T2 TSE and 7 T DESS yielded the highest score (4.4). In 

Fig. 2.4, both 1.5 T and 7 T images of a patient with chronic parotitis are presented 
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for all sequences. The overall quality of the 7 T images is clearly improved if 

compared to 1.5 T. The higher signal and spatial resolution can also be appreciated 

in Fig. 2.5, where MEDIC images of a pleomorphic adenoma are shown. A very 

narrow duct, compressed by the adjacent mass, is visible only at 7 T. Also, the 

internal tumor structure is better visualized at 7 T. However, due to the compressed 

duct, a fair evaluation was not possible and the visual rating regarding delineation 

and homogeneity of the duct could not be performed. The 1.5 T STIR and MEDIC 

achieved best depiction of glandular parenchyma (3.9), followed by 7 T MEDIC and 

DESS (3.8). 

 

Fig. 2.3 – Visual evaluation of the delineation and homogeneity of the duct. 

 

The largest discrepancy between the two subject groups, healthy volunteers and 

patients, was observed with the 7 T T2 TSE sequence in this evaluation. Considered 

separately, this sequence was rated 1.8 points better in the patient images than in 

the healthy volunteer images. Lymph nodes were best delineated from background 

tissue with 7 T MEDIC (4.6), 1.5 T STIR (4.3), and 7 T DESS (4.3).  
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  Duct Gland Lymph Nodes 

  Delineation Homogeneity Depiction Delineation 

  h p c h p C h p c h p c 

MEDIC 7T 4.5 5.0 4.7 4.0 4.3 4.1 3.8 3.8 3.8 5.0 4.3 4.6 

MEDIC 1.5T 2.5 3.3 2.9 2.0 3.0 2.4 3.8 4.0 3.9 3.3 4.0 3.6 

PD TSE 7T 4.0 3.0 3.6 4.0 3.0 3.6 3.3 4.0 3.6 3.3 3.8 3.5 

PD TSE 1.5T 1.0 1.0 1.0 1.3 1.5 1.4 2.8 3.8 3.3 2.0 1.8 1.9 

T2 TSE 7T 5.0 4.3 4.7 4.5 4.3 4.4 2.5 4.3 3.4 2.8 3.0 2.9 

T2 TSE 1.5T 1.3 2.3 1.8 1.7 2.7 2.2 3.0 3.5 3.3 2.3 1.8 2.0 

DESS 7T 4.8 4.5 4.6 4.3 4.5 4.4 3.5 4.0 3.8 4.3 4.3 4.3 

STIR 1.5 T 3.8 4.0 3.9 3.5 4.3 3.9 3.8 4.0 3.9 4.3 4.3 4.3 

 
Tab. 2.3 – Visual evaluation listed separately for healthy volunteers (h), patients (p), 
and both groups combined (c). Each value given represents the mean score of both 
readers. 

 

Superiority of the 7 T MRI compared to 1.5 T is impressively demonstrated in 

Fig. 2.6 showing fine branches of the intraglandular ductal tributaries up to forth order 

in a patient with recurrent swelling of the gland. Dilatation of small ductules is very 

well rendered by the 7 T image. In Fig. 2.7, corresponding images of a healthy 

volunteer are also provided for comparison. In the 7 T MEDIC image, lymph nodes 

can easily be recognized. Furthermore, their fibrous capsule can be delineated from 

the hilum which is not visible at 1.5 T. 
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Fig. 2.4 – Patient with chronic parotitis. Top row shows 7 T images (A: DESS, B: 
MEDIC, C: PD TSE, D: T2 TSE), which can be compared to the 1.5 T images below 
(E: STIR, F: MEDIC, G: PD TSE, H: T2 TSE). The arrow marks the enlarged duct. 
CNR between duct and surrounding tissue is higher at 7 T than at 1.5 T for all 
contrasts. 

 

 

Fig. 2.5 – Patient with a pleomorphic adenoma. Left side shows the 1.5 T MEDIC 
image in comparison to the 7 T MEDIC image (right). At 7 T the compressed duct is 
slightly visible (arrow). 
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Fig. 2.6 – MEDIC MIP images at 1.5 T (left) and 7 T (right) from a patient with 
recurrent gland swelling, which may be compared to corresponding images of a 
healthy volunteer in Fig. 2.7. 

 

 

Fig. 2.7 – MEDIC MIP images at 1.5 T (left) and 7 T (right) from a healthy volunteer. 
At 7 T, please note the good depiction of the lymph nodes in contrast to the 
surrounding glandular parenchyma as well as the details of the internal structure and 
capsule of the lymph nodes themselves (arrow). 
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2.4 Discussion 

These initial results demonstrate that high-resolution 7 T MRI of the parotid 

gland is a promising technique. Although positioning and fixation of the coil is 

certainly improvable, the examination was well tolerated by all subjects. MR imaging 

at 7 T provides excellent image contrast and resolution of the parotid gland and duct. 

While the MEDIC and DESS are advantageous for displaying the duct and branches 

(rated best in both the qualitative and quantitative evaluation), the gland tissue in 

tumor patients can be better characterized with the PD/T2 TSE. This was highlighted 

by the enormous difference between healthy volunteers and patients (1.8 points 

difference) in the visual evaluation. 

Despite the considerable increase in spatial resolution, the comparison of SNR 

values between field strengths (Tab. 2.2) showed that the GRE sequences still seem 

to have potential for even smaller voxels at 7 T. However, the TSE sequence yielded 

only comparable or even less SNR at 7 T compared to 1.5 T. This can be partially 

explained by the eight-fold higher resolution at 7 T, whereas the increase in field 

strength provides only a theoretical SNR increase of 4.7 assuming equivalent RF 

coils. The known B1 inhomogeneities at 7 T and limited penetration depth due to the 

smaller coil diameter (which actually favors higher SNR), resulting in an inefficient 

and inhomogeneous refocusing pulse, have to be considered as factors further 

reducing SNR. Hence, the combination of long echo times and strong flip angle 

variation may explain the difference in SNR between GRE and TSE sequences at 

7 T. 

MEDIC and especially DESS, which allows a high-resolution 3D tracing of the 

entire duct and which was found to be very useful for the planning of the 2D 

sequences, form the foundation of the proposed 7 T protocol. The PD/T2 TSE 

sequence may be included in case of tumor patients or other lesions of the glandular 

parenchyma. Additional intravenous contrast agent administration for better 

differentiating between different tumor types 11 is presumably also possible at 7 T 12. 
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The facial nerve could presumably be depicted at the base of the skull similar 

to a publication from L. Jäger and M. Reiser 13, but in general the results of former 

publications 7,13-14 could not be reproduced. The difficulty in depicting the 

intraglandular nerve might also explain why no study could be found by us which can 

provide an ‘all-in-one’ protocol for comprehensively diagnosing the parotid gland with 

all its components. At 7 T, fast imaging with steady state precession, as implemented 

in a TrueFISP or CISS sequence, which has been recommended in 1.5 T studies of 

the facial nerve 7,13-14, suffers from SAR limitations and is inherently prone to strong 

susceptibility artifacts at 7 T, especially in close proximity to the bony skull base and 

air-filled areas. Therefore, the focus of the present study concentrated on sequences 

which show the duct and parenchyma in great detail.  

The diagnosis of sialolithiasis is based on signal voids and prestenotic 

dilatation in MR images 4, whereas very small, non-obstructing duct stones, which 

may also cause clinical symptoms, might be missed at clinical field strengths. High-

field systems, with their higher ductal signal homogeneity together with the potential 

increase in spatial resolution and higher sensitivity to susceptibility changes, may 

address this issue by detecting smaller stones. Although 7 T MRI is still a rare and 

expensive technique, it might in the future serve as an option for well selected cases, 

i.e. those needing a very high spatial resolution and/or improved contrast, or those 

with prior, inconclusive standard imaging (differential diagnosis of sialolithiasis).  

Additionally, the increase in spatial resolution and good visualization of small 

tributaries may help in the more accurate diagnosis of sialectasia. 

Other techniques can be considered as alternatives: computer tomography 

(CT), however, is limited in the imaging of inflammatory diseases due to low duct 

visibility and low soft tissue contrast 15; ultrasound, on the other hand, offers a widely-

available, often-used and rather cheap alternative compared to MRI. Although it is 

capable of detecting stones, it is less well suited for evaluating the precise extent and 

location of a lesion. Furthermore, a recent study at 1.5 T suggested MR sialography 

following prediagnostic ultrasonography as a suitable approach in the diagnosis of 

salivary duct disorders 16. Lymph nodes are very well visualized at 7 T, and the 
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presence of adjacent lymph nodes or intraglandular lymph nodes may suggest the 

inflammatory nature of a lesion 2. However, the detectability of adjacent 

extraglandular lymph nodes depends on the coil size, or more specifically on the 

available field of view. Using a 10-cm-diameter single loop coil not only confines the 

available field of view on the side with the pathology, but also does not allow a 

comparison with the contralateral, presumably healthy side. 

Other limitations of the presented study are that the number of subjects was 

limited and that the included patients had a variety of pathologies. Unfortunately, no 

patient with an obstructing duct stone could be acquired for this study. However, we 

believe that our initial results are the basis for a more systematic analysis in patients.  

Of course, potential risks and side effects of high-field MRI for patients and 

medical/service personnel should be taken into account 17, as commercially available 

7 T systems are not certified as medical devices for human use 18-19. Over the last 

two years, the number of clinically-oriented studies at 7 T has increased dramatically, 

driven by emerging RF coil developments, and include potential 7 T applications not 

only for brain diseases 20-21  but also in other human body regions such as the knee 
22-23, prostate 24, or even heart 25-26.  

High magnetic fields have been reported to induce several transient 

physiologic effects (e.g. vertigo, nausea, light flashes). Nevertheless, a recent study 

on more than 100 subjects exposed to both 1.5 T and 7 T MRI of head, breast, and 

extremities found a very high acceptance of 7 T MRI. Vertigo during table movement 

at 7 T, by far the most disturbing phenomenon associated with the magnetic field, 

was rated less disturbing than some external factors such as acoustic noise and 

exam duration 27. Although there is an outstanding need to collect more patient 

questionnaire data and to systematically investigate these magnetic-field-related 

phenomena, 7 T MRI appears to be quite tolerable for a clinical diagnostic 

examination. 

In conclusion, the proposed protocol offers a non-invasive examination within 

about 20-30 minutes and may in the future present a reliable alternative to standard 
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X-ray sialography and a highly valuable addition to first-line ultrasonography in 

dedicated or unclear cases (due to high costs). Of course, further studies are needed 

to discuss the clinical impact of this technique in the assessment of patients with 

various salivary gland diseases. New sequences and dedicated multi-channel coils 

allowing parallel acquisition techniques will definitely further improve image quality as 

well as ameliorate current technical limitations such as SAR and restricted coverage. 
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Chapter 3  An eight-channel phased array RF 
coil for spine MR imaging at 7 T * 

 

Abstract 

A novel transmit/receive radiofrequency (RF) array for MRI of the human spine at 7 T 

has been developed. The prototype is characterized in simulations and bench 

measurements, and the feasibility of high-resolution spinal cord imaging at 7 T is 

demonstrated in in-vivo images of volunteers. 

The RF phased array consists of eight overlapping surface loop coils with a 

dimension of 12 x 12 cm each. Bench measurements were obtained with a phantom 

made of body-simulating liquid and assessed with a network analyzer. For safety 

validation, numerical computations of the RF field distribution and the corresponding 

specific absorption rate (SAR) were performed based on three different human body 

models. In vivo images of three volunteers (two with a documented scoliosis) were 

acquired. 

The presented RF coil could be easily integrated into the patient table for 

examinations of the cervicothoracic or thoracolumbosacral spine. Measurements of 

the g-factor indicated good image quality for parallel imaging acceleration factors up 

to 2.7 along the head-feet direction, which could be validated in the in vivo images. 

The in vivo images demonstrated very fine anatomical features such as the 

longitudinal ligaments or the venous drainage through the vertebral bodies. A largely 

homogeneous excitation over an extensive field-of-view of 40 cm could be obtained. 

These early results indicate that a multichannel transmit/receive phased array RF coil 

can be used for in vivo spine imaging at 7 T, thereby rendering high-resolution spine 

imaging a promising new application in 7 T clinical research. 

* Kraff O, Bitz AK, Kruszona S, Orzada S, Schaefer LC, Theysohn JM, Maderwald S, 
Ladd ME, Quick HH. An eight-channel phased array RF coil for spine MR imaging at 7 T. 
Invest Radiol. Nov 2009;44(11):734-740. 
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3.1 Introduction 

Magnetic resonance imaging (MRI) at high field strength (3 T and above) is currently 

establishing itself as a clinical standard for imaging the brain, spine, chest, abdomen, 

pelvis, vasculature, and extremities 1. Recent studies have shown that MRI of the 

spine at 3 T provides many improvements over 1.5 T spine MRI, especially in 

delineation of soft tissue, cerebrospinal fluid (CSF), and disc and bone interfaces 2. It 

has also been shown that the magnetic field strength, specifically 3 T compared to 

1.5 T, has an influence on the classification of patients with clinically isolated 

syndrome (CIS) suggestive for multiple sclerosis (MS) 3, although it has not yet led to 

earlier diagnosis 4. Since 3T spinal cord imaging in patients with CIS and MS 

improves the diagnostic accuracy 5, MR imaging of the spine at ultra-high field (UHF) 

strengths, i.e. 7 T and above, may be able to address the issue of earlier diagnosis 6. 

Provided that the theoretical 2.3-fold gain in signal-to-noise (SNR) from 3 T to 7 T 

can be clinically attained, this potentially allows improving the spatial resolution or 

reducing the scan time without sacrificing signal or contrast-to-noise (CNR) ratios 

compared to 3 T. Furthermore, the altered soft tissue contrast at 7 T may improve the 

delineation of gray and white matter in the internal spinal cord. Although it is still 

challenging to generate clinically useful contrasts at UHF, within the last few years 

several publications have shown that 7 T MRI renders an exquisite T2* contrast for 

demonstrating the venous microvasculature 7 and that it is advantageous in 

visualizing detailed structural anatomy and abnormalities of MS lesions 8 in the brain. 

In addition, the prediction that T1 contrast would collapse at higher field strengths 

due to the convergence of T1 relaxation times has been contradicted by recent in 

vivo experimental evidence 9. However, imaging outside the head at 7 T such as in 

the spine is still in its infancy, and there is a strong need to develop dedicated 

coils 10. 

Due to the improved sensitivity performance and concomitant high SNR of 

radiofrequency (RF) surface coils compared to volume RF coils 11, the phased array 

RF coil approach for signal reception has been successfully established for 1.5 and 

3 T imaging 12-13. Especially the depiction of the spine with the target anatomy lying 
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directly below the surface is predestined for the use of multi-channel surface RF 

arrays. 

A potential limitation when moving to higher field strengths, however, is that the 

RF excitation wavelength is inversely proportional to the field strength used. Thus, 

effects of electromagnetic wave propagation in tissue leading to destructive 

interferences and asymmetric distributions of the excitation radiofrequency magnetic 

(B1
+) field over the imaging sample are already prominent at 3 T. These effects and 

their associated signal inhomogeneities increase even further when moving to 7 T 

MRI  14, rendering large field-of-view (FOV) applications in high field MRI difficult. 

Thus, recent hardware and software advances have been introduced to produce a 

homogeneous RF excitation and/or to reduce the specific absorption rate (SAR) for 

whole-body imaging at 7 T. These techniques are based on multi-channel RF 

transmit arrays. By optimizing the phase and amplitude of each independent transmit 

array element, a technique commonly called RF shimming 15-16, a more 

homogeneous B1 field can be achieved in diverse subjects at ultra-high fields 17-18. It 

has also been shown that with transmit SENSE 19, i.e. the simultaneous application 

of specially-tailored RF and gradient pulses, a uniform, accelerated, slice-selective 

excitation can be implemented 20. 

In this work we describe a combined transmit/receive RF array, made of eight 

overlapping loop coils, for imaging the human spine at 7 T. We characterize this 

prototype in simulations and bench measurements as well as in phantom and in vivo 

measurements on volunteers for SNR, g-factor, and high-resolution imaging.  
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3.2 Materials and Methods 

RF Coil Design and Construction 

The spine array was developed for a 7 T whole-body MR scanner (Magnetom 7 T, 

Siemens Healthcare Sector, Erlangen, Germany) featuring a 60 cm bore. Eight 

square surface loop coils with a dimension of 12 x 12 cm were machined from FR4 

circuit board material (LPKF Laser & Electronics AG, Garbsen, Germany).  

Each coil element is 0.8 mm thick and has 1-cm-wide circuits with a copper-

clad layer of 35 µm thickness. Three 2 mm gaps in each loop were bridged by 2.7 

and 4.7 pF non-magnetic capacitors (Voltronics Corporation, Denville, NJ, USA). 

Common-mode cable current suppression was provided by a cable trap located 

directly at each coil element, formed by a 7 cm long semi-rigid coaxial cable wound in 

two turns in parallel with and a variable capacitor (2.5-10 pF). The cable trap was 

tuned to approximately 297 MHz. The coil elements were matched to a 50 Ω flexible 

coaxial cable (RG58, Huber+Suhner GmbH, Taufkirchen, Germany). In Fig. 3.1, a 

schematic of the coil design is given. 

 

Fig. 3.1: Circuit schematic of a coil element and cable trap for common-mode 
rejection. C_var, C_S and C_P are variable capacitors in the range of 1 pF to 13 pF. 
C1, C2 and C3 are 4.7, 2.7, and 4.7 pF capacitors, respectively. 
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All neighboring coil pairs were overlapped to reduce the mutual inductance 11. 

Furthermore, finite-difference-time-domain (FDTD) simulations 21 of the field 

distribution indicated use of a shifted and overlapped arrangement of the coil 

elements as given in Fig. 3.2, which significantly improved the isolation between 

neighboring as well as next-nearest-neighbor coils approximately by an additional 

-7 dB compared to the non-shifted design. For the simulations, a rectangular box 

(35 cm x 22 cm x 15 cm) with homogeneous tissue properties of εr = 43 and 

σ = 0.8 S·m-1 was used. 

 

Fig. 3.2: Arrangement of the coil elements (top, A). The conductor gaps are 2 mm 
wide and the corners are chamfered by 45°. Simulations yielded an improved B1

+ 
distribution in the region along the center of the array when a 180° phase shift 
between the upper and lower rows of coil elements was applied, i.e. the currents of 
all coil elements flow in the negative z direction from the feed points and then in the 
positive z direction along the center line. The arrows in the top image show the 
direction of the currents at the outer feed points for the two cases (B: without phase 
shift / red arrows, C: with phase shift / green arrows).  
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In Fig. 3.3 an image of the assembled spine array is shown. T/R switches and 

preamplifiers (Stark Contrast, Erlangen, Germany) are positioned behind the coil at 

the very end of the patient table and permit connection to eight individual Tx/Rx paths 

for future RF shimming or Transmit SENSE applications. The switches and amplifiers 

are not directly integrated with the individual coil elements to allow use for other coil 

developments, which reduces overall costs. As shown on the right-hand side in 

Fig. 3.3, the coil can be easily integrated into the patient table for examinations of the 

cervicothoracic or thoracolumbosacral spine. 

The same cable length of 70 cm was used for all eight elements, which were 

fed with opposite polarity between the two coil rows to provide a 180° phase shift. 

Hence, currents of both rows point in the positive z direction along the centerline loop 

paths (see Fig. 3.2). In the FDTD simulations for design optimization, this 180° phase 

shift increased the B1
+ amplitude along the centerline of the coil, i.e. in the region of 

the spine, but created a signal cancellation off-center and parallel to the centerline 

outside the anatomy of interest. 

Fig. 3.3: Image of the assembled spine 
array connected to a box with eight pre-
amplifiers and T/R switches which can 
be connected to eight individual Tx/Rx 
paths (left). Right: spine array coil placed 
on the patient table. 

 

 

The elements were matched to 50 Ohms at 297 MHz. Tuning and matching 

was optimized on the bench with a rectangular phantom (35 cm x 22 cm x 15 cm) 

filled with body simulating liquid (εr = 43, σ = 0.8 Sm-1) and assessed with a network 

analyzer (Agilent E5061A, Santa Clara, CA, USA). S-parameters were determined in 

the loaded condition and compared for both a phantom and patient load. Additionally, 

loaded and unloaded Q values were obtained with this set-up. 
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To acquire data for g-factor maps, MR images of the rectangular phantom 

were obtained using a FLASH-3D sequence with TR/TE = 3.6/1.76 ms, 10° flip angle, 

1 mm3 resolution, and matrix 512 x 512. Estimates of the g-factor were made with the 

difference method 22, which required the acquisition of four images: two with 

GRAPPA 23 acceleration R (giving SNRaccel.) and two without acceleration (giving 

SNRfull). The difference of each pair of images was used to estimate the standard 

deviation of the noise. The g-factor maps were calculated pixelwise by the following 

equation: g-factor = SNRfull / (SNRaccel. * √R). For the accelerated images, effective 

GRAPPA acceleration factors of R = 1.9, 2.7 and 3.5 (using 24 reference lines 24) 

were chosen. 

 

FDTD simulations 

For safety validation, numerical computations 25 of the RF field distribution and the 

corresponding SAR were performed based on the “Hugo” dataset 26 (male with 

approximately 1.85 m height and 95 kg weight, 33 different tissue types) as well as 

on two members of the Virtual Family 27 (“Duke”, 70 kg male, 1.74 m, and “Ella”, 

58 kg female, 1.6 m; both of these datasets include more than 80 different tissue 

types). SAR computations were performed for two regions of interest, i.e. for the 

cervical spine as well as for the lumbar spine. The array was modeled with the exact 

physical dimensions including a 1 cm thick plate of acrylic glass which was used for 

housing the coil. The coil elements were located 1.5 cm (1 cm housing plus 0.5 cm 

thick neoprene matting) from the back surface of the human body models. The tissue 

resolution was 2 mm for each model. In all simulations, the elements were excited 

individually with 1 W peak power and were subsequently vectorially combined. The 

calculations were done in free space over approximately 7 million grid points. 

To validate the numerical model of the array, S parameters were compared between 

simulation and bench measurements as well as B1
+ maps between simulation and 

MR measurement. Later utilized the actual flip angle imaging (AFI) sequence 28 with 
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the following parameters TR1 = 20 ms, TR2 = 100 ms, nominal flip angle of 60°, 

250 µs square pulse.  

 

In vivo studies 

In vivo studies were performed with signed consent and were approved by the 

institutional review board. Three volunteers were included: a 31 year-old male (90 kg, 

1.86 m), a 29 year-old female (57 kg, 1.62 m), and a 30 year-old male (75 kg, 

1.90 m). For the latter two volunteers, a scoliosis had been previously documented. 

Images were assessed with a FLASH-3D sequence with the following parameters: 

TR/TE = 20/3.06 ms, 30° flip angle, resolution 0.57 mm isotropic, matrix 

704 x 704 x 144, SPAIR fat suppression, and parallel imaging with a GRAPPA 23 

acceleration factor 1.9. 
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3.3 Results 

S-parameter measurements on the bench yielded an S11 match of the loaded coil 

between -21 dB and -30 dB for the phantom load for all coil elements. S12 coupling 

between elements was measured with the loaded coil by transmitting with the 

network analyzer through one coil element while receiving through another. S12 was 

found to be in the range of -23 dB to -36 dB for the phantom load. For the case with 

patient load, the measurements revealed higher reflection und coupling of the coil 

elements, i.e. -13 dB > S11 > -19 dB and -16 > S12 > -27 dB, respectively. Since the 

S-parameters differed only at the first decimal between S12 and S21, only half of the 

scattering matrix is provided in Tab. 3.1 for reasons of clarity. 

 

 

Tab. 3.1: S-parameter measurements obtained under two conditions: coil loaded with 
phantom (left values) and coil loaded with cervicothoracic spine of a volunteer (right 
values). The values are given in dB. 
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Fig. 3.4: G-maps for different GRAPPA 
acceleration factors applied with phase 
encoding along head-feet (left) and 
right-left direction (right), respectively. 

 

The unloaded to loaded Q ratio was measured under two conditions. First, the 

coil with fixed tuning and matching was used, yielding an unloaded to loaded Q ratio 

of 1.4 for a single element in the presence of all other elements and 2.4 for a single 

element alone. Second, a single element of the array was used and retuned to 

297 MHz for the unloaded case, so that the unloaded to loaded Q ratio, here 6.5, 

gives a better insight into conductive losses of the coil alone 29. 

Maximum g-factors were 1.35, 1.48, and 1.94 for GRAPPA acceleration factors 

R = 1.9, 2.7, and 3.5 in the head-feet direction, and g = 1.71, 2.32, and 5.64 for R = 

1.9, 2.7, and 3.5 in the right-left direction. In Fig. 3.4, all g-maps are provided for 

comparison. 
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In the numerical simulations, similar S-parameters were found compared to the 

bench measurements. In Fig. 3.5 a comparison between the measured and the 

simulated B1
+ distribution of a coronal plane approximately 2 cm inside the phantom 

is given. In both cases, a similar B1
+ distribution was found and the maximum B1

+ 

values varied by less than  7% (22 µT found in the measurement and 20.7 µT found 

in the simulation). The maximum permitted input power levels for the lumbar and 

cervical spine regions are provided in Tab. 3.2 for compliance with the IEC 

guidelines 30 of 10 W/kg for 10g-averaged local SAR. For the lumbar spine, almost 

the same maximum permitted power levels were found for the Hugo and Ella 

datasets, whereas the Duke dataset rendered a 15% lower level. Qualitatively, 

similar distributions of the deposited power were found for all three datasets as 

shown in Fig. 3.6. On the other hand, for the calculations in the cervical spine, very 

similar values were found for the Duke and Ella datasets, but a large discrepancy of 

33% was found for the Hugo dataset. For the in vivo examinations, the maximum 

permitted power levels were set to 12 W for imaging the lumbar spine and to 9 W for 

imaging the cervical spine. 

 

Fig. 3.5: For compliance, B1
+ maps were compared between measurement (A) and 

simulation (B) using coronal planes 2 cm inside the phantom. In both cases, similar 
B1

+ distributions as well as comparable values for maximum B1
+ were found. 
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Fig. 3.6: SAR calculations using 
different human body models; 
Hugo (top, A), Duke (middle, B), 
and Ella (bottom, C).  Shown is 
the voxel-based SAR (voxel size 
2 mm³) on a logarithmic scale; 
images were normalized to their 
individual maximum. 

 

 

 

Tab. 3.2: Maximum permitted input 
power (time-averaged) Pin in Watts 
calculated from numerical simulations 
using different human body models for 
which the localized (10 g averaged) 
SAR complies with the limit of 
10 W/kg given in the guidelines. 

 

 

In vivo images revealed a good and homogeneous excitation along the spine 

over a 40 cm FOV (see Fig. 3.7-3.9). Anatomic details such as the vertebral bodies, 

the longitudinal ligaments, and the venous drainage through the vertebrae were well 

visualized (Fig. 3.7). In a coronal scan, the predicted B1
+ signal cancellation parallel 

Dataset Lumbar 
spine 

Cervical 
spine 

Hugo 12.95 W 13.59 W 

Duke 10.91 W 9.13 W 

Ella 12.77 W 9.12 W 

Pin for in vivo 

measurements 
12 W 9 W 
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to the centerline is outside the region of interest as expected; see Fig. 3.7. On the 

FLASH images, the vertebrae could be very well delineated, for example the dens in 

Fig. 3.8 (A, C). In a scan of the cervicothoracic spine, contrast between CSF and 

myelin was found to be good in the thoracic region but diminished caudally 

presumably due to flip angle variation (see Fig. 3.8 A). Additionally, B1 inhomogeneity 

caused a strong signal cancellation at vertebra T8 in Fig. 3.8 B. Nerve fibers of the 

cauda equina could be followed through the neural foramen in a sagittal scan of the 

thoracolumbosacral spine (see Fig. 3.8 B). 

In Fig. 3.9 (A-C), coronal images of the male volunteer with a documented 

biconvex scoliosis are presented. The lateral curvature is visible over the whole spine 

(Fig. 3.9 A, C). As expected from the g-factor evaluation, a GRAPPA acceleration 

factor of 2.7 revealed good image quality compared to a 1.9-fold acceleration shown 

in Fig. 3.9 (A, B). On axial slices, nerve roots could be followed from the spinal cord 

(see Fig. 3.9 D). 



 

Fig. 3.7: Images of the 
thoracolumbosacral spine of a 
31-year-old volunteer. In (A) note 
the residual longitudinal signal 
inhomogeneity (arrow) seen as a 
hypointense region in the 
otherwise homogeneous signal 
distribution. The arrowhead 
points to the good delineation of 
nerve root sleeves in this coronal 
view. In (B) the high spatial 
resolution is reflected by the 
depiction of the posterior 
longitudinal ligament 
(arrowhead), and by the 
delineation of the entry points of 
veins into the vertebrae  

(arrow). The latter are also shown in an axial view in (C), arrow, with the spinal cord 
marked by the arrowhead. 

 

Fig. 3.8: Sagittal views of (A) 
cervicothoracic and (B) 
thoracolumbosacral spine of a 
female volunteer. Note the 
good visualization of the dens 
(A, arrow), which is also 
shown in an axial view in (C). 
In (A), the good contrast 
between myelin and CSF is 
pointed out (arrowhead), 
which diminishes cranially 
presumably due to flip angle 
variation. An artifact, 
assumedly from pulsation of 
the aorta, is also visible right 

above the arrowhead. In (B), B1 inhomogeneity caused a strong signal cancellation 
at vertebra T8 (arrowhead). Caudally, nerve fibers of the cauda equina can be 
followed very well through the neural foramen (arrows).  
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Fig. 3.9: Images of a male volunteer with a documented biconvex scoliosis. A 
comparison of GRAPPA acceleration factors of 1.9 and 2.7 is given in (A) and (B), 
respectively. Coronal views of the scoliosis of the (A) cervicothoracic and (C) 
thoracolumbosacral spine are presented. In (C), vessels are visible at the vertebrae 
(arrow). Nerve roots (arrowhead) can be followed from the spinal cord (arrow) on 
their way through the neural foramen in the axial slices of the lumbar spine (D). 
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3.4 Discussion 

These early results indicate that a multi-channel transmit/receive phased array RF 

coil has successfully been designed and evaluated for in vivo spine imaging at 7 T,  

thereby rendering high-resolution spine imaging a promising new application in 7 T 

clinical research. To our knowledge, for the first time MR images with a large field of 

view of 40 cm could be obtained of a human spine at 7 T.  

Since the coil has been developed for use in upcoming clinical studies, it is not 

intended that the coil be tuned in individual patients. Hence, a phantom of tissue 

simulating liquid was used as a load for tuning and matching, and the capacitor 

values were kept fixed after that. Of course, the S-parameters in Tab. 1 measured 

with a phantom load yielded better transmission and isolation values compared to 

those measured with a patient load, since the phantom could be positioned planar on 

the coil whereas the human spine is curved and introduces gaps between the coil 

elements and the tissue. Nevertheless, the transmission and isolation of the single 

elements with the patient load remained sufficient. For example, Element 1 yielded 

an S11 of -13 dB, but this means that only 5% of the input power will be reflected at 

the port. 

The measurement of the ratio of unloaded to loaded Q showed that when the 

coil is individually tuned for the loaded and unloaded case, the ratio is relatively high. 

This is generally to be expected at 7 T with a loop coil of this size, where sample 

losses should be dominant. However, this retuning changes the characteristics of the 

coil. The measurement in which the unloaded coil was not retuned rendered a very 

low Q ratio which is in contradiction to the subjectively good image quality obtained 

with this coil. Although the ratio of unloaded to loaded Q is the most common coil-

quality metric, it is more useful for homogenous volume coils and may be misleading 

for surface and array coils 31, so that its significance should not be overweighted. 

For an acceleration factor of 2.7 along the head-feet direction, the g-factor 

remained below 1.5 indicating adequate image quality not compromised by amplified 

noise and reconstruction artifacts, which could be validated subjectively in the in vivo 
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images. Since the array consists of two rows of four elements each, g-factors for 

acceleration in the right-left direction were significantly higher, as expected. 

SAR scales approximately with the field strength squared and is a critical 

factor in 7 T MRI. For a transmit coil an intensive compliance test is obligatory 

including a validation of the coil model used in the numerical simulations. The 

presented B1
+ map comparison indicated a good coil model for the performed SAR 

calculations which were based on three different human body models to take SAR 

relevant variables such as bodyweight and physique into account. Similar values for 

the maximum permitted power level were found for all three datasets when the coil 

was placed for imaging the lumbar spine region. However, for imaging the cervical 

spine, the result from the Hugo dataset deviated significantly from those obtained 

with the Virtual Family datasets. The much higher allowed input power with the Hugo 

dataset calculation can be explained by a much larger distance between coil and 

neck. The anatomical configuration of the Hugo model did not allow optimal 

positioning of the spine array in the cervical region. In contrast to the Virtual Family 

datasets, the Hugo dataset was not obtained from an MRI examination but from a 

dissected male corpse portioned into several thousand slices. Hence, the posture of 

the Hugo model is fundamentally different from the Virtual Family models. 

Furthermore, the Hugo model consists of only 33 different tissues, whereas the 

Virtual Family models are based on over 80. 

In the in vivo images, the delineation of very fine structures such as the 

longitudinal ligaments or the venous plexus as well as its drainage through the 

vertebral bodies reflects the very high resolution of 0.57 mm isotropic. Osseous 

structures appear ideally on the 7 T images with a high contrast to intervertebral 

disks and ligaments, which might aid in the diagnosis of herniated disk and disk 

degeneration. 

Large FOV imaging is important for assessing patients with metastases or 

multiple sclerosis lesions in the spinal cord, for example. Although good contrast 

between CSF and myelin was achieved over a substantial part of the FOV, apparent 

flip angle variations diminished contrast in some regions and need to be addressed. 
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With the ability to apply recent developments like RF shimming 16 or Transmit 

SENSE techniques 19 using the proposed multi-channel transmit coil, further 

improvements in image quality can be expected. 

Driven by emerging RF coil and other technical developments, the number of 

clinically-oriented studies at UHF has increased dramatically over the last two years. 

While most of the recent research at 7 T has been conducted in the brain 

investigating non-contrast enhanced MR angiography 32 or new techniques for 

functional MRI 33, for example, 7 T MRI is more and more expanding its potential to 

whole-body imaging as well. Quantitative MRI for assessing the musculoskeletal 

system is advancing and offers potential advantages for analyzing cartilage 

degeneration 10,34. Furthermore, the feasibility of imaging abdominal organs such as 

the prostate 35 or heart 36 at 7 T has been shown. 

Of course, 7 T ultra-high field MR imaging of the spine with the presented coil needs 

to be evaluated for a variety of pathologies and patients to further discuss the clinical 

impact of this technology. Additionally, gradient and especially spin echo sequences 

have to be optimized for contrast, SAR, and spatial coverage to be included in a 

dedicated 7T spine imaging protocol. Currently, work is underway to pursue this task. 
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Chapter 4  A transmit/receive RF array for 
imaging the carotid arteries at 7 T: 
Coil design and first in-vivo results* 

 

Abstract 

This study presents a novel transmit/receive RF array for MRI of the carotid arteries 

at 7 T. The prototype is characterized in numerical simulations and bench 

measurements, and the feasibility of plaque imaging at 7 T is demonstrated in first in-

vivo images. 

The RF phased array coil consists of eight surface loop coils. To allow imaging of 

both sides of the neck, the RF array is divided into two coil clusters, each with four 

overlapping loop elements. For safety validation, numerical computations of the RF 

field distribution and the corresponding SAR were performed based on a 

heterogeneous human body model. To validate the coil model, maps of the transmit 

B1
+ field were compared between simulation and measurement. In vivo images of a 

healthy volunteer and a patient were acquired. 

A similar distribution and a very good match of the absolute values were found 

between the measured and simulated B1
+ transmit RF field for the validation of the 

coil model. In vivo images revealed good signal excitation of both sides of the neck 

and a high vessel-to-background image contrast for the non-contrast-enhanced 3D 

FLASH sequence. 7 T could depict the extent of stenosis, and revealed the 

disruption and ulcer of the plaque.  

This study demonstrates that two four-channel transmit/receive RF arrays for each 

side of the neck is a suitable concept for in vivo MR imaging of the carotid arteries at 

7 T.  

 
* Kraff O, Bitz AK, Breyer T, Kruszona S, Maderwald S, Brote I, Gizewski ER, Ladd ME, 

Quick HH. A transmit/receive RF array for imaging the carotid arteries at 7 Tesla: Coil design 

and first in-vivo results. Invest Radiol. 2011;46(4): 246-254. 
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4.1 Introduction 
Driven by emerging radiofrequency (RF) coil and other technical developments, the 

number of clinically-oriented magnetic resonance imaging (MRI) studies at ultra-high 

magnetic field strengths, i.e. 7 Tesla (T) and above, has increased dramatically over 

the recent years. While most of the current research at 7 T has been conducted on 

the brain, investigating, for example, non-contrast-enhanced magnetic resonance 

angiography (MRA) of subtle microvascular diseases 1 or new techniques for 

functional studies 2, 7 T MRI is more and more expanding its potential to whole-body 

imaging as well 3-5. MRI at 7 T is of significant interest since it provides an opportunity 

for increases in spatial resolution or acquisition speed while revealing novel imaging 

contrasts 6-7. At 7 T, fast gradient echo sequences show hyperintense vascular signal 

even without administration of contrast agent 8. A first look at the potential of 7 T 

carotid imaging was presented at recent conferences 9-11, indicating a need for new 

dedicated high-field local transmit receive RF coils to allow both parallel imaging 

techniques as well as simultaneous imaging of both carotid arteries for a side-by-side 

comparison. 

Challenges at 7 T include increases in the specific absorption rate (SAR), 

severe RF field inhomogeneities, as well as enhanced susceptibility and chemical 

shift artifacts. Hence, RF technology, imaging sequences, and scan protocols require 

major modifications to provide optimal image quality and to obey safety regulations. 

Any 7 T RF coil must include transmit capability, since integrated transmit body RF 

coils are not routinely available at this field strength. Effects of electromagnetic wave 

propagation in tissue leading to destructive interferences and asymmetric 

distributions of the excitation radiofrequency magnetic field (B1
+) over the imaging 

sample are already prominent at 3 T. These effects and their associated signal 

inhomogeneities increase even further when moving to 7 T 12. This necessitates 

numerical simulations for both the design process of a 7 T coil and for subsequent 

characterization and safety compliance testing. 

3 T MRI has already demonstrated improved vascular imaging with increased 

signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) compared to 1.5 T MRI 
13. Vascular diseases, atherosclerosis in particular, cause high morbidity and 
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disability worldwide. Accurate characterization and quantification of the plaque 

components in relation to the fibrous cap and the vascular lumen are important to 

identify and monitor high-risk patients 14-15. Contrast-enhanced MRA is currently the 

most widely performed imaging technique (at 1.5 T and 3 T) for an accurate 

estimation of carotid stenosis 16-18. Additionally, preoperative MRA provides important 

anatomical information not easily visible on ultrasounds (US) as well as a high 

reproducibility of imaging results 19 that is inherently less user-dependent than US 

imaging. Furthermore, for diagnostic purposes, MRA can replace digital subtraction 

angiography (DSA), which is an invasive procedure associated with a low but definite 

incidence of complications 20-21.   

The carotid artery bifurcation has the highest incidence of plaque formation, 

and since it tends to be relatively superficial, surface RF coils and phased-array coils 
22 in particular are advantageous 23-24. In this work, an eight-channel transmit/receive 

RF array was built for imaging the carotid arteries at 7 T. The array was made of four 

overlapping surface loop coils per side to form a 2 x 4-channel RF array to assess 

both arteries in one acquisition. We characterize this prototype in simulations and 

bench measurements and show first in vivo results. 
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4.2 Methods:  
RF Coil Design and Construction 

The carotid array was developed for a 7 T whole-body MR scanner (Magnetom 7 T, 

Siemens Healthcare Sector, Erlangen, Germany) featuring a 60 cm bore. Eight 

square surface loop coils with a dimension of 6 x 7 cm were machined from FR4 

circuit board material (LPKF Laser & Electronics AG, Garbsen, Germany).  

Each coil element was 0.8 mm thick and has 5-mm-wide circuits with a 

copper-clad layer of 35 µm thickness. Three 2-mm gaps in each loop were bridged 

by 8.2 pF non-magnetic capacitors (Voltronics Corporation, Denville, NJ, USA). 

Common-mode cable current suppression was provided by a cable trap formed by a 

6.5 cm long semi-rigid coaxial cable wound in two turns in parallel with a variable 

capacitor (2.5-10 pF, Murata Manufacturing Co., Ltd.). The cable trap was tuned to 

approximately 297 MHz. To keep the overall dimensions of the array minimal, the 

cable trap was placed directly at each coil element and orthogonal to the loop plane 

(Fig. 4.1). 

To allow imaging of both sides of the neck, two coil clusters, each with four 

loop elements, were combined to one RF array. All neighboring coil pairs were 

overlapped to reduce the mutual inductance 22. Furthermore, finite-difference-time-

domain (FDTD) 25 simulations of the field distribution indicated use of a shifted (by 

21 mm) and overlapped (12 mm) arrangement of the coil elements as given in Fig. 

4.1, which was validated experimentally when loading the coil with a bottle phantom 

(22.0 cm x 13.5 cm x 13.5 cm) with homogeneous electrical properties of εr = 43 and 

σ = 0.8 S·m-1. For the numerical simulations, a phantom with the same dimensions 

and electrical properties was used, and different overlaps and shifts of the coil rows 

were evaluated. 

An identical cable length of 85 cm was used for all eight elements as 

determined by preamplifier decoupling 22. The elements were fed with opposite 

polarity between the two coil rows to provide a 180° phase shift (i.e., between 

elements 1/2 and 3/4, as well as between 5/6 and 7/8). Hence, the currents of both 
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rows pointed in the positive z direction along the centerline loop paths and increased 

the B1
+ amplitude in the region of interest, i.e. along the carotid artery.   

The elements were each matched to 50 Ohms at 297 MHz. Tuning and 

matching were optimized on the bench with a nearly square cylindrical bottle 

phantom (22.0 cm x 13.5 cm x 13.5 cm) filled with body-simulating liquid (εr = 43, 

σ = 0.8 Sm-1) and assessed with a network analyzer (Agilent E5061A, Santa Clara, 

CA, USA). S-parameters were determined in the loaded condition both with the bottle 

phantom and with the neck of a human volunteer. Additionally, loaded and unloaded 

Q values were obtained. 

 
Fig. 4.1: Photograph of the carotid RF coil (A) and model for numerical simulations 

(B). (A) shows one side of the carotid array coil featuring 4 geometrically overlapping 

RF transmit/receive loop coil elements. The numbering gives the element numbers 

used in the text for the two coil clusters. (B) shows the angled positioning of the RF 

coil model on the human model, similar to the actual in vivo measurements. 

 

To acquire data for g-factor maps, two fully sampled datasets of the phantom 

were obtained using a gradient echo sequence with TR/TE = 26/12 ms, 20° flip 

angle, 0.7 x 0.7 x 5.0 mm3 resolution, and matrix 384 x 384. Undersampled datasets 

were generated by omitting phase encoding lines using the OpenGRAPPA algorithm 
26 with effective acceleration factors of R = 1.8, 2.4 and 2.9 (using 48 reference lines 
27). Estimates of the SNR were made with the difference method 28. By subtracting 

the two images, a noise image was generated; the signal was determined in the sum 
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image of the two images. Finally, g-factor maps were calculated pixelwise by the 

following equation: g-factor = SNRfull / (SNRaccel. * √R).  

Additionally, a noise correlation matrix was calculated out of uncombined 

single-channel images using a turbo-fast low-angle shot (TurboFLASH) sequence 

without RF pulses. 

 

FDTD simulations 
For safety validation, numerical computations 25 of the RF field distribution and the 

corresponding SAR were performed on the male member “Duke” of the Virtual Family 
29 (70 kg weight, 1.74 m height, including more than 80 different tissue types). The 

tissue resolution was 2 mm. The carotid array was modeled using the exact 

dimensions and characteristics of the physical coil including array geometry, 

conductor width, gap sizes of the capacitors as well as their capacitance of 8.2 pF, 

and the 2-mm-thick plate of Makrolon (Bayer Material Science AG, Leverkusen, 

Germany) which was used for housing the coil. The cable traps were orthogonal to 

the loop plane, i.e. pointing away from the patient. Since a sufficiently large distance 

of approximately 2 cm to the body tissue was maintained, their influence on B1
+ and 

SAR distribution in the human body is negligible. For this reason the cable traps were 

not simulated to avoid the significantly higher computational cost. The coil elements 

were located 7 mm (2 mm housing plus 5-mm-thick neoprene matting) from the neck 

surface of the human body model and were angled similar to the real imaging 

situation. Care was taken to place the center of the coil over the carotid bifurcation. In 

the simulation, the elements were excited individually with 0.5 W power and were 

subsequently vectorially combined. The calculations were done in free space over 

approximately 40 million grid points. 

To validate the numerical model of the array, S-parameters were compared 

between simulation and bench measurements. Additionally, B1
+ maps were 

compared. Experimental B1
+ maps utilized the actual flip angle imaging (AFI) 

sequence 30 with the following parameters: TR1 = 20 ms, TR2 = 100 ms, 

TE = 2.04 ms, nominal flip angle of 45°, 250 µs square pulse, matrix 64 x 64, 

resolution 3.0 x 3.0 x 5.0 mm3.  
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For further safety validation, temperature measurements were performed 

during typical gradient and spin echo sequences, as introduced in the next section. 

Four fiber optic probes (Luxtron, California, USA), which can monitor the temperature 

during MRI measurements, were carefully placed at various positions across a 

phantom filled with body-simulating liquid. One probe was placed approximately 1-

2 mm within the phantom at the location of maximum calculated SAR, where the 

highest temperature elevation is expected. Two probes were placed 15 mm and 

50 mm within the phantom, and the fourth probe served as a reference. 

 

In vivo studies 
In vivo studies were performed with signed consent and were approved by the 

institutional review board. Three volunteers were included. 

A 28-year-old healthy male (70 kg, 1.74 m) with no history of vascular disease and a 

69-year-old male (80 kg, 1.87 m) with a known ulcerating plaque and a 50% stenosis 

of the right internal carotid artery were assessed with high-resolution MR 

angiography (MRA) images of the entire neck with a 0.54 mm isotropic, non-contrast-

enhanced 3D FLASH sequence with the following parameters: TR/TE = 5.5/2.2 ms, 

15° flip angle, BW = 385 Hz/pixel, GRAPPA acceleration factor 1.8, TA = 3:47 min. 

Additionally, axial, pulse-triggered PD/T2-weighted turbo spin echo (TSE) images 

with TE = 29/77 ms, 180° flip angle, BW = 280 Hz/pixel, GRAPPA acceleration factor 

1.8, matrix = 512 x 512, and 0.35 x 0.35 x 3 mm3 resolution were acquired. 

Furthermore, a 26-year-old healthy male (82 kg, 1.83 m) was imaged for a 

comparison of the 7 T FLASH sequence with a clinical 1.5 T time-of-flight (3D TOF) 

sequence. At 1.5 T, a Magnetom Espree system (Siemens Healthcare Sector, 

Erlangen, Germany) in combination with a vendor-provided 4-channel neck RF 

receive coil was used. The TOF sequence used the following parameters: 

TR/TE = 26/7 ms, 25° flip angle, 3 slabs, BW = 100 Hz/pixel, 0.7 x 0.7 x 1 mm3 

resolution, and TA = 7:15 min. A 3D FLASH sequence with the same parameters as 

at 7 T but lower resolution (0.8 mm isotropic) was also performed at 1.5 T for 

comparison. 
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4.2 Results:  
S-parameter measurements on the bench yielded an S11 match of the loaded coil 

between -18 dB and -26 dB for the phantom load for all coil elements. S12 coupling 

between elements was measured with the loaded coil by transmitting with the 

network analyzer through one coil element while receiving through another. The 

shifted arrangement of the two coil rows significantly improved the isolation between 

neighboring as well as next-nearest-neighbor coils by approximately an additional 

-7 dB compared to the non-shifted design. With the final design, S12 was found to be 

-13 dB or better for the phantom load. Similar values were found for the patient load, 

i.e. S11 was between -19 dB and -25 dB and S12 was better than -12 dB. Since the S-

parameters differed only at the first decimal between S12 and S21, only half of the 

scattering matrix is provided in Table 1 for reasons of clarity. In the numerical 

simulations, similar S-parameters were found compared to the bench measurements. 

The unloaded to loaded Q ratio was measured under two conditions. First, the 

coil with fixed tuning and matching was used, yielding an unloaded to loaded Q ratio 

of 1.7 for a single element in the presence of all other elements. Second, a single 

element of the array was used alone and retuned to 297 MHz for the unloaded case, 

so that the unloaded to loaded Q ratio, here 3.2, gives a better insight into conductive 

losses of the coil alone 31.  

Coronal and axial g-factor maps are given in Fig. 4.2 for effective acceleration 

factors of 1.8, 2.4, and 2.9 with phase-encoding directions along head-feet (HF) and 

anterior-posterior (AP). Mean g-factors were 1.1, 1.2, and 1.4 for the coronal maps 

(HF) and 1.1, 1.4, and 1.7 for the axial maps (AP). Additionally, the maps give a 

feeling for the signal penetration depth of the coil in the given directions. 

Noise correlation was found to be better than -18 dB on average between 

neighboring elements which is shown in Fig. 4.3. 
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Fig. 4.2: GRAPPA g-factor maps of the 
2x4-channel carotid RF coil acquired 
on a bottle phantom simulating the 
human neck. The g-factor maps show 
the spatially variant noise distribution of 
the coil in two orientations (coronal with 
phase-encoding direction in head-feet 
(HF), and axial with phase-encoding 
direction in anterior-posterior (AP)) as 
a function of increasing effective 
acceleration factor (R=1.8; R=2.4; 
R=2.9). Red color indicates areas with 
high g-factors for acceleration factors R 
above 2.4. 

 S1 S2 S3 S4 S5 S6 S7 S8 

S1 -23 / -19        

S2 -17 / -16 -21 / -22       

S3 -17 / -16 -17 / -19 -20 / -20      

S4 -16 / -17 -14 / -13 -13 / -12 -26 / -25     

S5 -40 / -42 -44 / -43 -48 / -46 -44 / -44 -23 / -19    

S6 -45 / -44 -40 / -40 -41 / -40 -41 / -42 -15 / -15 -22 / -23   

S7 -41 / -41 -45 / -44 -42 / -42 -47 / -44 -14 / -14 -16 / -15 -24 / -23  

S8 -40 / -42 -46 / -45 -50 / -44 -41 / -43 -16 / -18 -16 / -14 -16 / -14 -18 / -19 

 
Tab. 4.1: S-parameter measurements obtained under two conditions: coil loaded with 
phantom (left values) and coil loaded with the neck of a volunteer (right values). The 
values for both load conditions show good correlation indicating load insensitive 
performance of the carotid RF coil and, hence, no need for individual patient tuning. 
The values are given in dB. 
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In Fig. 4.4, comparisons between the measured and the simulated B1

+ distribution of 

two sagittal planes approximately 0.8 cm and 2 cm inside the phantom are given. A 

similar B1
+ distribution was found for both planes between measurement and 

simulation, and the maximum B1
+ values varied by less than 9%. The maximum 

permitted input power level (accepted power, i.e. forward minus reflected) for 

compliance with the IEC guidelines 32 of 10 W/kg for 10 g-averaged local SAR was 

7.9 W (total RF power at coil plug, equally split to all coil channels). In Fig. 4.5, the 

SAR distribution is shown on a lateral view as well as on an axial plane. The latter 

was taken at the SAR hot spot.  

For the RF-intense TSE sequence with 7.9 W input power and 1:31 min 

acquisition time, a temperature increase of 0.25° was measured for the probe at the 

calculated RF hot spot. The second probe, 15 mm within the phantom, registered a 

temperature increase of only 0.1°, while the other two probes did not detect any 

significant changes in temperature. A temperature increase of 0.15° was measured 

at the RF hot spot for the FLASH sequence with 1.8 W input power and 3:47 min 

acquisition time. 

Fig. 4.3: Noise correlation matrix. 
Self-correlation of the elements along 
the diagonal of the matrix has been 
normalized to 0 dB. The average 
noise coupling between individual 
elements in the coil remained low 
(mean coupling = -18 dB, peak = -11 
dB). 
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Fig. 4.4: Validation of the coil model used in the numerical simulation. Measured B1

+ 
maps (left) were compared with simulated B1+ maps (right) regarding field 
distribution and maximum B1

+ values for two sagittal planes 0.8 cm (upper row) and 
2.0 cm (lower row) inside the phantom. The planes are shown exemplarily for one 
side only. The maximum B1

+ values found were 19.6 µT vs. 21.5 µT, and 12.4 µT vs. 
11.8 µT, respectively. 
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Fig. 4.5: SAR calculations using the Virtual Family human body model “Duke” 29.  
Shown is the 10-g-averaged SAR on a logarithmic scale. The axial view (right) shows 
the plane with the highest SAR value (1.27 W/kg). Please note that the most critical 
region in the human head, the eyes, show relatively low SAR values. 

 
Although this prototype was built with a rigid, non-flexible housing and has 

relatively large overall dimensions, it could be positioned well on the two subjects. A 

strip of Velcro around the neck was used to fixate the two coil clusters.  

A comparison of the non-contrast enhanced sequences (3D TOF at 1.5 T and 

3D FLASH at 7 T) for MR angiography of the carotid arteries is provided in Fig. 4.6. 

While the 1.5 T TOF sequence provides adequate vessel-to-background signal and 

good background signal suppression, the 3D FLASH sequence at this field strength 

(not shown in Fig. 4.6) does not provide any signal enhancement. At 7 T, however, 

3D FLASH imaging provides strong vascular signal enhancement combined with 

more vascular detail compared to 1.5 T TOF due to the higher spatial resolution 

acquired in the 7 T data set. 
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Fig. 4.6: Comparison of the non-contrast enhanced sequences 3D TOF at 1.5 T and 

3D FLASH at 7 T for MR angiography of the carotid arteries. While the 1.5 T TOF 

sequence provides adequate vessel-to-background signal and good background 

signal suppression (A), the 3D FLASH sequence at this field strength does not 

provide any signal enhancement (not shown). At 7 T, however, 3D FLASH imaging 

(B) provides strong vascular signal enhancement combined with more vascular detail 

due to the higher spatial resolution acquired in the 7 T dataset.  
 

In vivo images reveal good signal excitation of both sides and a high vessel-to-

background image contrast for the non-contrast-enhanced 3D FLASH sequence (Fig. 

4.7 A-D). Although the signal intensity is less for the pulse-triggered TSE compared 

to the 3D FLASH, the vessel walls of the internal and external carotid arteries are 

well visualized (Fig. 4.7 E,F). 
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Fig. 4.7: Images of a healthy volunteer. All three orientations are given in (A)-(C) for 
the non-contrast-enhanced 3D FLASH sequence. In (D) a MIP of the 3D FLASH 
shows excellent angiographic visualization of both carotid arteries. A classification of 
the vessel walls can be obtained from the axial PD- and T2-weighted TSE images in 
(E) and (F), respectively. Magnifications of the right carotid arteries are provided in 
(E) and (F). 
 

A side-by-side comparison of different imaging modalities (digital subtraction 

angiography (DSA), 1.5 T contrast-enhanced MRA, and 7 T non-contrast-enhanced 

MRA) is given in Fig. 4.8 for the case of the patient with a stenosis of the right 

internal carotid artery with an ulcerated plaque. Without the administration of contrast 

agent, 7 T could render the extent of the stenosis as well as the plaque ulceration 

with the same quality as compared to the other two techniques. As is known for 

maximum-intensity-projection (MIP) techniques in MRI, the stenosis is overestimated 

using this technique compared to DSA. However, in the axial source images the 

lumen in the stenotic region can be well visualized (lower row of Fig. 4.8). 
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Fig. 4.8: Images of a patient with an ulcerated atherotic plaque and 50% stenosis in 
the right internal carotid artery. Top row (A-C): A MIP of the 7 T non-contrast-
enhanced 3D FLASH sequence (A) is compared to the correlating gold standard 
digital subtraction angiography (DSA) image (B) and MIP of a 1.5 T contrast-
enhanced MRA (C). The bottom row (D-G) shows axial 7 T 3D FLASH images of the 
stenosis and plaque ulceration in the right internal carotid artery (arrows). 

 

For further differentiation of intraplaque compartments, axial 7 T PD- and T2-

weighted TSE images were compared to the corresponding computer tomography 

(CT) angiography image (Fig. 4.9). Axial 7 T images revealed the disruption and 

ulcer of the plaque as well as the flow of (unenhanced) blood as low T2-signal flow 
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void through the narrowed lumen, corresponding well to the contrast agent inflow in 

the respective CT-angiographic section. In addition, in the plaque an area of marked 

T2-hyperintensity is visible both in the T2- as well as PD-weighted images. One could 

hypothesize that this reflects the lipid core in the plaque, since the hyperintensity 

presents a similar signal compared to adjacent adipose tissue, although at present 

no histological proof is available in this patient, who underwent carotid stenting after 

MRI. 

 

 
Fig. 4.9: Axial 7 T PD- and T2-weighted TSE images (A, B) of the patient are 
compared to the corresponding CT angiographic image (C). The images show 
marked wall thickening of the internal carotid artery (arrows). 
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4.3 Discussion 
This study demonstrates that the concept of two four-channel transmit/receive RF 

arrays, one for each side of the neck, can be used for in vivo MR imaging of the 

carotid arteries at 7 Tesla. High-resolution MRA images of the carotid arteries were 

shown as well as first experience with cross-sectional high-resolution plaque imaging 

at 7 T. 

 The design criteria for this combined transmit/receive RF coil included a rigid 

geometry rather than a flexible design to maintain a fixed coil element relationship 

during transmit. The rigid setup, on the other hand, decreased the receive capability 

of the coil, as the coil elements could not be adapted to different neck shapes, which 

can vary significantly among the population. Although publications on the analysis of 

the g-factors of various coil designs have demonstrated that two loops should be 

slightly separated instead of overlapped to obtain the best g-factors and therefore the 

best parallel imaging capability 33, decoupling of this coil was performed 

geometrically with an optimum overlap of nearest-neighbor coils 22. An alternative to 

geometrical decoupling would be to insert either capacitors or inductors between the 

two coils so that the mutual inductance is canceled 34-37. However, SAR may be 

increased around these lumped elements.  

The carotid RF coil was developed for future use in upcoming clinical studies, 

making a fixed-tuned design mandatory. Although an individually-tuned coil might 

achieve slightly better image quality, a fixed-tuned coil is not only easier to handle by 

a radiographer and saves time for setup, it is also more robust and more accepted by 

a patient because of the reduced examination time. Hence, a bottle with similar 

dimensions as a human neck was filled with tissue-simulating liquid and used for a 

single tuning and matching procedure. The comparison of S-parameters obtained in 

this set-up with the coil loaded with a human neck rendered similar results, so that 

the coil performs relatively insensitively to different loads. Reflection and isolation of 

the individual elements were found to be sufficient: less than 2% of the input power 

will be reflected at the port and less than 5% of the transmit power will be coupled 

into neighboring elements.  
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Measurements of the g-factors as a function of different acceleration factors 

rendered adequate image quality that was not compromised by amplified noise and 

reconstruction artifacts up to an acceleration factor of 2.4 along the head-feet 

direction (for anterior-posterior only up to R = 1.8). Acceleration along the head-feet 

direction performed slightly better than along anterior-posterior, as expected, since 

the sensitivities of the coil elements are further disjoint along head-feet. 

 An intensive compliance test with regards to patient safety is obligatory for a 

RF transmit coil at 7 T, since SAR scales approximately with the field strength 

squared and becomes a non-negligible, critical factor for high-field MRI. Thus, the 

coil model used in the numerical simulations needs to be validated in order to 

validate the SAR calculations. The presented B1
+ map comparison indicated a 

satisfactory coil model (close to reality) for the performed SAR calculations. We 

assume the worst case error in the E-fields to be of the same order as the difference 

in the absolute values of B1
+ fields between measurement and simulation. 

Additionally, within the limitations of the temperature measurements (being point-

wise and having been made at only a few locations), they were in good agreement 

with the SAR calculations and confirmed the calculated maximum input power level 

as well as the location of the SAR hot spot. For the numerical simulations, the “Duke” 

model was chosen because it contains more than twice as many different tissue 

types compared to the standard “Hugo” dataset 38 (33 different tissue types). 

Furthermore, the Virtual Family 29 datasets were obtained from an actual MRI 

experiment, which facilitates an exact and realistic positioning of the coil. Hence, with 

the validated SAR calculations, a reliable compliance test with 3-dimensional 

information could be achieved.  

The in vivo images revealed that high-resolution MR angiography as well as 

detailed plaque characterization in patients are feasible at 7 T. Even in the presence 

of a severely calcified carotid plaque, the differentiation of blood flow in the remnant 

vessel lumen as well as differentiation of distinct intraplaque components and surface 

ulcerations were possible without the administration of a contrast agent. This is of 

particular importance, since especially patients with relevant atherosclerosis 

commonly have relative or absolute contraindications against the administration of 
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gadolinium contrast material. Another inherent advantage of 7 T field strength has 

also been shown in Fig. 4.6, comparing the non-contrast-enhanced sequences 3D 

TOF at 1.5 T and 3D FLASH at 7 T. At 7 T, 3D FLASH imaging provides strong 

vascular signal enhancement 8 combined with more vascular detail due to the 3 times 

higher spatial resolution acquired within half of the acquisition time of the 1.5 T TOF 

dataset. 

For perfectly timed and triggered plaque images, electrocardiogram (ECG) 

triggering is mandatory 39-40. At 7 T, however, the ECG signal is corrupted by 

interferences with the electromagnetic fields of the imager and, in particular, by 

magneto-hydrodynamic effects 41-42. Hence, cardiac triggering in this study had to be 

performed with pulse triggering, which is less exact and leads to residual in-plane 

vessel wall movement during data acquisition with potential degradation of image 

sharpness and signal smearing. New, more reliable ECG gating techniques, such as 

recently introduced acoustic cardiac triggering 43, might further improve image quality 

at 7 T. 

The results of the present study demonstrate that many of the major RF coil 

related challenges of 7 T carotid MRI can be successfully addressed. The 2x4-

channel transmit/receive carotid RF coil presented in this study provides sufficient 

SNR for high image resolution and signal penetration depths for assessment of the 

carotid vessel wall, while the transmit energy levels all stay within the patient safety 

relevant SAR limits. This study, with a focus on RF coil development and first clinical 

demonstration, forms the groundwork for further studies with a focus on the imaging 

protocols and clinical applications in patients with atherosclerosis. Especially for 

plaque characterization, gradient and spin-echo sequences have to be optimized for 

soft tissue contrast, SAR, and spatial volume coverage. With RF shimming 44-45 and 

hence potentially different phase settings between coil elements for each individual 

patient, B1
+ may be increased in a defined ROI around the plaque, which may be 

advantageous especially for the TSE sequence. SAR restrictions, difficulties with the 

ECG trigger, and high-field related image artifacts have been identified as key 

challenges of 7 T carotid MRI. Therefore, the known and well established standard 

imaging contrasts for multicontrast carotid imaging (PD, T1, T2, TOF, and black 
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blood imaging) at 1.5 T and 3 T 46-50 will have to be adapted for the 7 T imaging 

regime in order to exploit the full potential of 7 T high-field MRI for atherosclerotic 

plaque imaging.  

 

 



91 
 

References 
1. Heverhagen JT, Bourekas E, Sammet S, Knopp MV, Schmalbrock P. Time-of-

flight magnetic resonance angiography at 7 Tesla. Invest Radiol. Aug 

2008;43(8):568-573. 

2. Utting JF, Kozerke S, Luechinger R, et al. Feasibility of k-t BLAST for BOLD 

fMRI with a spin echo acquisition at 3 Tesla and 7 Tesla. Invest Radiol. 

2009;44(9):495–502. 

3. Krug R, Stehling C, Kelley DA, Majumdar S, Link TM. Imaging of the 

musculoskeletal system in vivo using ultra-high field magnetic resonance at 7 

Tesla. Invest Radiol. 2009;44(9):613–618. 

4. Kraff O, Bitz AK, Kruszona S, et al. An eight-channel phased array RF coil for 

spine MR imaging at 7 T. Invest Radiol. Nov 2009;44(11):734-740. 

5. Snyder CJ, DelaBarre L, Metzger GJ, et al. Initial results of cardiac imaging at 

7 Tesla. Magn Reson Med. Mar 2009;61(3):517-524. 

6. Ladd ME. High-field-strength magnetic resonance: potential and limits. Top 

Magn Reson Imaging. Apr 2007;18(2):139-152. 

7. Schenck JF, Zimmerman EA. High-field magnetic resonance imaging of brain 

iron: birth of a biomarker? NMR Biomed. Nov 2004;17(7):433-445. 

8. Maderwald S, Ladd SC, Gizewski ER, et al. To TOF or not to TOF: strategies 

for non-contrast-enhanced intracranial MRA at 7 T. MAGMA. Mar 2008;21(1-

2):159-167. 

9. Kraff O, Maderwald S, Hahn S, et al. In-Vivo Plaque Imaging of the Carotid 

Arteries at 7 Tesla: First Results. Paper presented at: Proceedings 16th 

Scientific Meeting, International Society for Magnetic Resonance in Medicine; 

April, 2008; Toronto. 

10. Piccirelli M, DeZanche N, Nordmeyer-Massner J, et al. Carotid Artery Imaging 

at 7T: SNR Improvements using Anatomically Tailored Surface Coils. Paper 

presented at: Proceedings 16th Scientific Meeting, International Society for 

Magnetic Resonance in Medicine; April, 2008; Toronto. 

11. Wiggins G, Zhang B, Duan Q, et al. 7 Tesla Transmit-Receive Array for 

Carotid Imaging: Simulation and Experiment. Paper presented at: Proceedings 



92 
 

17th Scientific Meeting, International Society for Magnetic Resonance in 

Medicine; April, 2009; Honolulu. 

12. Van de Moortele PF, Akgun C, Adriany G, et al. B(1) destructive interferences 

and spatial phase patterns at 7 T with a head transceiver array coil. Magn 

Reson Med. Dec 2005;54(6):1503-1518. 

13. Cury RC, Houser SL, Furie KL, et al. Vulnerable plaque detection by 3.0 tesla 

magnetic resonance imaging. Invest Radiol. Feb 2006;41(2):112-115. 

14. Virmani R, Burke AP, Kolodgie FD, Farb A. Pathology of the thin-cap 

fibroatheroma: a type of vulnerable plaque. J Interv Cardiol. Jun 

2003;16(3):267-272. 

15. Yuan C, Kerwin WS, Yarnykh VL, et al. MRI of atherosclerosis in clinical trials. 

NMR Biomed. Oct 2006;19(6):636-654. 

16. Yuan C, Kerwin WS, Ferguson MS, et al. Contrast-enhanced high resolution 

MRI for atherosclerotic carotid artery tissue characterization. J Magn Reson 

Imaging. Jan 2002;15(1):62-67. 

17. Kwee RM, van Oostenbrugge RJ, Mess WH, et al. Carotid Plaques in 

Transient Ischemic Attack and Stroke Patients: One-Year Follow-up Study by 

Magnetic Resonance Imaging. Invest Radiol. Sep 8 2010. 

18. Lobbes MB, Heeneman S, Passos VL, et al. Gadofosveset-enhanced 

magnetic resonance imaging of human carotid atherosclerotic plaques: a 

proof-of-concept study. Invest Radiol. May 2010;45(5):275-281. 

19. Li F, Yarnykh VL, Hatsukami TS, et al. Scan-rescan reproducibility of carotid 

atherosclerotic plaque morphology and tissue composition measurements 

using multicontrast MRI at 3T. J Magn Reson Imaging. Jan 2010;31(1):168-

176. 

20. Raghavan P, Mukherjee S, Gaughen J, Phillips CD. Magnetic resonance 

angiography of the extracranial carotid system. Top Magn Reson Imaging. Oct 

2008;19(5):241-249. 

21. Heiserman JE, Dean BL, Hodak JA, et al. Neurologic complications of cerebral 

angiography. AJNR Am J Neuroradiol. Sep 1994;15(8):1401-1407; discussion 

1408-1411. 



93 
 

22. Roemer PB, Edelstein WA, Hayes CE, Souza SP, Mueller OM. The NMR 

phased array. Magn Reson Med. Nov 1990;16(2):192-225. 

23. Hayes CE, Mathis CM, Yuan C. Surface coil phased arrays for high-resolution 

imaging of the carotid arteries. J Magn Reson Imaging. Jan-Feb 

1996;6(1):109-112. 

24. Balu N, Yarnykh VL, Scholnick J, Chu B, Yuan C, Hayes C. Improvements in 

carotid plaque imaging using a new eight-element phased array coil at 3T. J 

Magn Reson Imaging. Sep 24 2009. 

25. CST MICROWAVE STUDIO®, CST GmbH [computer program]. Version User 

Manual Version 2009. Darmstadt, Germany. 

26. Griswold MA, Jakob PM, Heidemann RM, et al. Generalized autocalibrating 

partially parallel acquisitions (GRAPPA). Magn Reson Med. Jun 

2002;47(6):1202-1210. 

27. Porter JR, Wright SM, Reykowski A. A 16-element phased-array head coil. 

Magn Reson Med. Aug 1998;40(2):272-279. 

28. Firbank MJ, Coulthard A, Harrison RM, Williams ED. A comparison of two 

methods for measuring the signal to noise ratio on MR images. Phys Med Biol. 

Dec 1999;44(12):N261-264. 

29. Christ A, Kainz W, Hahn EG, et al. The Virtual Family--development of 

surface-based anatomical models of two adults and two children for dosimetric 

simulations. Phys Med Biol. Jan 21 2010;55(2):N23-38. 

30. Yarnykh VL. Actual flip-angle imaging in the pulsed steady state: a method for 

rapid three-dimensional mapping of the transmitted radiofrequency field. Magn 

Reson Med. Jan 2007;57(1):192-200. 

31. Vizmuller P. RF design guide: systems, circuits, and equations Artech House, 

Inc.; 1995. 

32. International Electrotechnical Commission. Medical electrical equipment - Part 

2-33: Particular requirements for the safety of magnetic resonance diagnostic 

devices. IEC 60601-2-33. Vol 2002. 



94 
 

33. Weiger M, Pruessmann KP, Leussler C, Roschmann P, Boesiger P. Specific 

coil design for SENSE: a six-element cardiac array. Magn Reson Med. Mar 

2001;45(3):495-504. 

34. Duensing GR, Brooker HR, Fitzsimmons JR. Maximizing signal-to-noise ratio 

in the presence of coil coupling. J Magn Reson B. Jun 1996;111(3):230-235. 

35. Wang J. A novel method to reduce the signal coupling of surface coils for MRI. 

Proceedings of the 4th Annual Meeting of ISMRM. Vol New York1996:1434. 

36. Lian J, Roemer PB, Inventors. MRI RF Coils. US patent 5,804,9691998. 

37. Nabeshima T, Takahashi T, Matsunaga Y, Yamamoto E, Inventors. RF probe 

for MRI. US patent 5,489,8471996. 

38. The Visible Human Project, http://vhp.ntu.edu.sg/. 

39. Yuan C, Mitsumori LM, Beach KW, Maravilla KR. Carotid atherosclerotic 

plaque: noninvasive MR characterization and identification of vulnerable 

lesions. Radiology. Nov 2001;221(2):285-299. 

40. Hinton-Yates DP, Cury RC, Wald LL, et al. 3.0 T plaque imaging. Top Magn 

Reson Imaging. Oct 2007;18(5):389-400. 

41. Stuber M, Botnar RM, Fischer SE, et al. Preliminary report on in vivo coronary 

MRA at 3 Tesla in humans. Magn Reson Med. Sep 2002;48(3):425-429. 

42. Nijm GM, Swiryn S, Larson AC, Sahakian AV. Extraction of the 

magnetohydrodynamic blood flow potential from the surface electrocardiogram 

in magnetic resonance imaging. Med Biol Eng Comput. Jul 2008;46(7):729-

733. 

43. Frauenrath T, Hezel F, Heinrichs U, et al. Feasibility of cardiac gating free of 

interference with electro-magnetic fields at 1.5 Tesla, 3.0 Tesla and 7.0 Tesla 

using an MR-stethoscope. Invest Radiol. 2009;44(9):539–547. 

44. Hoult DI, Phil D. Sensitivity and power deposition in a high-field imaging 

experiment. J Magn Reson Imaging. Jul 2000;12(1):46-67. 

45. Ibrahim TS, Lee R, Baertlein BA, Abduljalil AM, Zhu H, Robitaille PM. Effect of 

RF coil excitation on field inhomogeneity at ultra high fields: a field optimized 

TEM resonator. Magn Reson Imaging. Dec 2001;19(10):1339-1347. 



95 
 

46. Quick HH, Debatin JF, Ladd ME. MR imaging of the vessel wall. Eur Radiol. 

Apr 2002;12(4):889-900. 

47. Fayad ZA, Fuster V. Clinical imaging of the high-risk or vulnerable 

atherosclerotic plaque. Circ Res. Aug 17 2001;89(4):305-316. 

48. Yarnykh VL, Terashima M, Hayes CE, et al. Multicontrast black-blood MRI of 

carotid arteries: comparison between 1.5 and 3 tesla magnetic field strengths. 

J Magn Reson Imaging. May 2006;23(5):691-698. 

49. Underhill HR, Yarnykh VL, Hatsukami TS, et al. Carotid plaque morphology 

and composition: initial comparison between 1.5- and 3.0-T magnetic field 

strengths. Radiology. Aug 2008;248(2):550-560. 

50. Zhao X, Underhill HR, Yuan C, et al. Minimization of MR contrast weightings 

for the comprehensive evaluation of carotid atherosclerotic disease. Invest 

Radiol. Jan 2010;45(1):36-41. 

 
 

 



Chapter 5  An Eight-Channel Transmit / 
Receive Multi-Purpose Coil for 
Musculoskeletal MR Imaging at 7 T * 

 

Abstract 
MRI plays a leading diagnostic role in assessing the musculoskeletal (MSK) system 

and is well established for most questions at clinically-used field strengths (up to 3 T). 

7 T MRI of the knee has already received increasing attention in the current 

published literature, but there is a strong need to develop new radiofrequency (RF) 

coils to assess more regions of the MSK system. In this work, an eight-channel 

transmit/receive RF array was built as a multi-purpose coil for imaging some of the 

thus far neglected regions. An extensive coil characterization protocol and first in vivo 

results of the human wrist, shoulder, elbow, knee, and ankle imaged at 7 T will be 

presented. For safety validation, a detailed compliance test was performed including 

full wave simulations of the RF field distribution and the corresponding specific 

absorption rate (SAR) for all joints. In vivo images of four volunteers were assessed 

with gradient echo (GRE) and turbo spin echo sequences (TSE) modified to obtain 

optimal image contrast, full anatomic coverage, and the highest spatial resolution 

within a reasonable acquisition time. The performance of the RF coil was additionally 

evaluated by in vivo B1 mapping. 

This study demonstrates that the presented concept can be used as a multi-purpose 

coil for high-resolution in vivo MR imaging of the MSK system at 7 T. Not only GRE 

but also typical clinical and SAR intensive sequences such as STIR and TSE 

performed well. Imaging of cartilage and nerves could in particular benefit from this 

technique. 

 
* Kraff O, Bitz AK, Dammann P, Ladd SC, Ladd ME, Quick HH. An Eight-Channel Transmit / 

Receive Multi-Purpose Coil for Musculoskeletal MR Imaging at 7T. Med Phys. Dec 2010; 

37(12):6368-6376.  
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5.1 Introduction 
With its superior tissue contrast and sensitivity to tissue composition, magnetic 

resonance imaging (MRI) plays a leading diagnostic role in assessing the 

musculoskeletal (MSK) system and is well established for most questions at 

clinically-used field strengths (up to 3 T) 1. Although low-field MR imaging (up to but 

not including 1.5 T) may be used efficiently in daily clinical practice 2-3, most 

musculoskeletal MR examinations are performed at magnetic field strengths of 1.5 T 

or 3 T 4. While at 1.5 T most musculoskeletal tissues (cartilage, muscle, tendon, 

ligaments, bones etc.) exhibit sufficient signal-to-noise ratio (SNR), which is limited 

by the small field of view (FOV) that is usually utilized, 3 T MRI has recently 

demonstrated improved imaging quality and speed and provided preliminary 

evidence for concomitant improvement in diagnostic accuracy 5-6. 

However, there is still a need for further improvement, in particular for small 

defects and an accurate assessment of cartilage abnormalities, for example 7-8. 

Cartilage is one of the most important biomarkers in degenerative and traumatic joint 

disease. While early recognition of degeneration is important, of course, there is also 

a pressing need for reliable and objective monitoring in order to evaluate and 

compare various treatment options in cartilage surgery 9. Additionally, the in vivo 

evaluation of peripheral nerves for the differentiation of inflammatory and 

degenerative changes is limited by SNR and spatial resolution on clinical systems 10. 

The current literature shows increasing evidence that ultra-high field (UHF, 7 T 

and above) MRI can provide improved diagnostic capabilities compared with MRI 

performed at standard clinical field strengths 11-17. Especially 7 T MRI of the knee 11-

15, 17-23 has received increasing attention in the published literature, whereas other 

joints have been addressed less (wrist 11, 14, 16-17, 24-26, ankle 14, 17) or not at all 

(shoulder, elbow). This may be explained by the technical challenges of performing 

UHF MRI in general: changes in T1 and T2 relaxation times, enhanced susceptibility 

and chemical shift artifacts, no integrated transmit body coil indicating the necessity 

for local transmit/receive radiofrequency (RF) coils, the challenges of verifying patient 

safety with respect to coil placement, and greater RF energy deposition. The effects 

of electromagnetic wave propagation in tissue leading to destructive interferences 



98 
 

and asymmetric distributions of the excitation RF magnetic field (B1
+) over the 

imaging sample are already prominent at 3 T. These effects and their associated 

signal inhomogeneities increase even further with increasing field strength 27, 

necessitating numerical simulations for both the design process of a 7 T coil and for 

subsequent characterization and safety compliance testing. 

In this work, an eight-channel transmit/receive (T/R) RF array was built as a multi-

purpose coil for imaging some of the thus far neglected musculoskeletal regions. The 

array was made of four overlapping loop coils per side to enable flexible positioning. 

First in vivo results of the human shoulder, elbow, wrist, knee, and ankle as well as 

an extensive characterization of the coil in these body parts will be presented. 
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5.2 Materials and Methods 

RF Coil Design and Construction 

The multi-purpose coil was developed for a 7 T whole-body MR scanner (Magnetom 

7 T, Siemens Healthcare Sector, Erlangen, Germany). Eight square surface loop 

coils with a dimension of 6 x 7 cm2 each were machined from 0.8-mm-thick FR4 

circuit board material (LPKF Laser & Electronics AG, Garbsen, Germany).  

Each coil element has 5-mm-wide circuits with a copper-clad layer of 35 µm 

thickness, and three 2 mm gaps bridged by 8.2 pF non-magnetic capacitors 

(Voltronics Corporation, Denville, NJ, USA). Common-mode cable current 

suppression was provided by a cable trap formed by a 6 cm long semi-rigid coaxial 

cable wound in two turns (5-mm-diameter inductor) in parallel with a variable 

capacitor (2.5-10 pF, Murata Manufacturing Co., Ltd., Kyoto, Japan). The cable trap 

was tuned to approximately 297 MHz and placed directly at each coil element (Fig. 

5.1). 

To facilitate easy positioning on different joints, two coil clusters, each with 

four loop elements, were combined to form one RF transmit/receive array. An 

overlapped and shifted arrangement of the coil elements was chosen to reduce the 

mutual inductance between neighboring and next-nearest-neighbor coils 28 as shown 

in Fig. 5.1. The elements were fed with opposite polarity between the two coil rows to 

provide a 180° phase shift. Hence, the currents of both rows pointed in the same 

direction along the centerline loop paths to increase the B1
+ amplitude in the region of 

interest. The phase shift was implemented directly on the coil elements by inverting 

the drive polarity. 

Despite a very intensive safety assessment of the T/R RF coil described 

below, which ensured a safe usage for in vivo measurements, additional attention 

was given to the cabling (as known from commercially available RF coils). Since the 

loop elements were not shielded, the cables (2.5 times wavelength in length) were 

led directly away from the elements (Fig. 5.1). This minimized the risk of common-

mode currents, as the cables were routed away from the local transmit fields. The 

length of the cables was chosen to be sufficient for positioning on various joints, and 
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care was taken to maintain a suitable distance (filled with pads) between patient and 

cable. The elements were then connected to a box with eight circuit boards 

containing T/R switches and preamplifiers (Stark Contrast, Erlangen, Germany). The 

transmit paths of the T/R switch box were connected to the individual output ports of 

an 8 x 1kW RF power amplifier (Dressler, Stolberg, Germany). 

 

 
Fig. 5.1: Photograph of the multi-purpose RF coil. Each coil cluster is made of 4 
geometrically overlapping RF transmit/receive loop coil elements. The coil row of 
Elements 1 and 2 (5 and 6, respectively) was shifted by 2.1 cm with respect to the 
row of Elements 3 and 4 (7 and 8, respectively) to reduce the mutual inductance 
between next-nearest-neighboring elements. The numbering gives the element 
numbers used in the text for the two coil clusters. 
 

The elements were each matched to 50 Ohms at 297 MHz. Tuning and 

matching were optimized on the bench with a nearly square cylindrical bottle 

phantom (22.0 x 13.5 x 13.5 cm3) filled with body-simulating liquid (εr = 43, σ = 0.8 

Sm-1) and assessed with a network analyzer (Agilent E5061A, Santa Clara, CA, 

USA). S-parameters were determined in the loaded condition with the bottle 

phantom. Additionally, it was verified that touching the cables had no effect on the 

resonance peak; sensitivity to cable handling could be a hint for common-mode 
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currents or an ineffective cable trap. Afterwards, the S-parameters were verified on a 

human wrist, elbow, and shoulder.  

 

Phantom Study 
To acquire data for g-factor maps, two fully sampled datasets of the phantom 

used for tuning and matching were obtained with a spin echo sequence with TR/TE = 

500/25 ms, 180° flip angle, 0.7 x 0.7 x 5.0 mm3 resolution, and matrix 384 x 384. 

Undersampled datasets were generated by omitting phase encoding lines using the 

OpenGRAPPA algorithm 29 with effective acceleration factors of R = 1.8, 2.4, and 2.9 

(using 48 reference lines 30). Estimates of the SNR were made with the difference 

method 31. By subtracting the two images, a noise image was generated; the signal 

was determined in the sum image of the two images. Finally, g-factor maps were 

calculated pixelwise by the following equation: g-factor = SNRfull / (SNRaccel. * √R).  

A noise correlation matrix was calculated out of uncombined single-channel 

images using a turbo fast low-angle shot (TurboFLASH) sequence without RF 

pulses. 

Additionally, B1
+ maps were acquired to validate the numerical model of the 

coil used in the finite difference time domain (FDTD) simulations (next section).  Both 

the qualitative pattern of the B1
+ field in defined sagittal planes (1, 2, and 3 cm within 

the phantom; on the left and right sides) as well as the quantitative maximum B1
+ 

value in the measured B1
+ maps were compared with simulated B1

+ maps. 

Experimental B1
+ maps utilized the actual flip angle imaging (AFI) sequence 32 with 

the following parameters: TR1 = 20 ms, TR2 = 100 ms, TE = 2.04 ms, 250 µs square 

pulse with an amplitude of 100 V, matrix 64 x 64, resolution 3.0 mm isotropic.  

To further verify that only one cable trap per element was sufficient despite the 

rather long cables, gradient and spin echo images were obtained in a special setup: 

One of the two coil clusters was placed under a large phantom (35 cm x 22 cm x 15 

cm), so that the cables could be routed along the phantom. Since common-mode 

currents have an effect on image homogeneity 33, the cables should then be visible in 

images acquired with a large 500 mm field-of-view covering the whole phantom if 

such currents are present.  
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FDTD simulations 
 For safety validation, numerical computations 34 of the RF field distribution 

were performed on a homogeneous phantom (same size and electrical properties as 

the phantom used in the phantom study) as well as on a heterogeneous body model. 

The male member “Duke” of the Virtual Family 35 (70 kg weight, 1.74 m height, 

including more than 80 different tissue types) was chosen for computations of the RF 

field and of the corresponding SAR for all joints: shoulder, elbow, wrist, knee, and 

ankle. The tissue resolution of the voxel model was 1 or 2 mm edge length 

depending on the anatomical region. The multi-purpose coil was modeled using the 

exact dimensions of the physical coil including the complete cover of the coil made of 

2-mm-thick Makrolon (Bayer Material Science AG, Leverkusen, Germany), which 

was used for housing the coil. The cable traps, however, were not included in the 

model, since their inclusion would have otherwise resulted in the need for 

significantly higher computing power. The coil elements were located 7 mm (2 mm 

housing plus 5-mm-thick neoprene matting) from the joint surface of the human body 

model. To take asymmetric loading next to, for example, curved joints into account, 

coil positioning and alignment and a realistic posture of the body model analogous to 

the real imaging case were used. In the simulation, the elements were excited 

individually with 0.5 W time-averaged RF power and were subsequently vectorially 

combined. The calculations were performed in free space over 5 to 30 million grid 

points depending on the anatomical region.  
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In Vivo Study 
 In vivo studies were approved by the institutional review board and were 

performed with signed consent. Four healthy volunteers were included: a 27-year-old 

female (60 kg, 1.67 m; shoulder), a 30-year-old male (82 kg, 1.87 m; elbow), a 32-

year-old male (88 kg, 1.86 m; wrist with known ganglion, knee, ankle), and a 50-year-

old female (86 kg, 1.78 m; ankle). For MRI of the wrist and elbow the subjects were 

scanned in the head-first prone position with the joint extended in front of them, while 

the supine position was chosen for imaging the shoulder (head-first) and the knee 

and ankle (feet-first). The two coil clusters were placed as a “sandwich” on top and 

below the individual joints and fixated with a strip of Velcro® tape. 

A set of different sequences was used to test the coil on the different joints: (1) 

clinical gradient and spin echo sequences such as 2D multi-echo data image 

combination (MEDIC), 3D double-echo steady state (DESS) with and without water 

excitation, 2D short tau inversion recovery (STIR), and 2D PD/T2-weighted turbo spin 

echo (TSE); and (2) actual flip angle imaging (AFI) to map the B1
+ field in vivo. The 

sequence parameters are summarized in Tab. 5.1. The B1
+ maps were normalized to 

the accepted peak power and, together with the flip angle distribution, compared with 

corresponding anatomical images (MEDIC). 

 

 TR 
[ms] 

TE  
[ms] 

slices alpha 
[deg] 

matrix voxel size 
[mm3] 

TA 
[min:sec] 

MEDIC 1000 15 39 30 512x512 0.4x0.4x1.5 5:33 
3D-DESS 11 4 128 15 512x512 0.4x0.4x1.5 6:15 
STIR 5000 35 9 120 256x256 0.6x0.6x3.0 1:37 
PD/T2 TSE 4350 34/91 15 180 512x512 0.4x0.4x2.0 3:26 
AFI 120 2 64 45 64x64 3.0x3.0x5.0 8:12 

 
Tab. 5.1: Sequence parameters. For the STIR sequence, an inversion time of 
250 ms was selected. A rectangular pulse of 250 µs length was used for the AFI 
sequence at two different TR’s of 20 ms and 100 ms. Given is the non-interpolated 
voxel size. 
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5.3 Results  

Phantom Study 

Measured reflection and coupling between neighboring elements of the coil 

loaded with the phantom were S11 = -16 dB and S12 = -17 dB, respectively. Similar 

values were found for the verification on the human wrist and slightly better values of 

around -20 dB were found with the elbow and shoulder load. In the numerical 

simulations, similar S-parameters (S11 = -20 dB, S12 = -12 dB) were found 

compared to the bench measurements. 

Coronal and axial g-factor maps are given in Fig. 5.2 for effective acceleration 

factors of 1.8, 2.4, and 2.9 with phase-encoding directions along head-feet (HF) or 

anterior-posterior (AP). Mean g-factors were 1.25, 1.36, and 1.73 for the coronal 

maps (HF) and 1.05, 1.32, and 1.65 for the axial maps (AP).  

 

  
Noise correlation was found to be better than -18.7 dB on average between 

neighboring elements, which is shown in Fig. 5.3. Coil pairs that were overlapped 

and shifted showed lowest noise correlation, while those pairs that were not shifted 

(e.g. Elements 1 and 2) showed highest correlation values (-11 dB maximum).  

Fig. 5.2: GRAPPA g-factor maps of 
the 2x4-channel multi-purpose RF 
coil acquired in a bottle phantom. 
The g-factor maps show the spatially 
variant noise distribution of the coil in 
two orientations (coronal with the 
phase-encoding direction in head-
feet (HF), and axial with the phase-
encoding direction in anterior-
posterior (AP)) as a function of 
increasing effective acceleration 
factor (R=1.8; R=2.4; R=2.9). 
Orange/red colors indicate areas 
with amplified noise which may 
diminish image quality. 
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For the safety assessment, the performance of the cable traps was evaluated 

in a phantom measurement. Even with extreme windowing in the large field-of-view 

gradient and spin echo images (Fig. 5.4), no effects of the long cables were visible. A 

comparison between the measured and the simulated B1
+ distribution is shown 

qualitatively in Fig. 5.5 for three defined planes on the right side of the phantom. A 

similar B1
+ distribution was found between measurement and simulation for both the 

right and left side, which is also reflected in Tab. 5.2 which gives absolute values of 

maximum B1
+. Here, a difference of less than 7% was found between measurement 

and simulation. 

 

FDTD Simulations 
The maximum permitted input power levels (accepted power, i.e. forward 

minus reflected) for compliance with the IEC guidelines 36 of 20 W/kg for 10 g-

averaged local SAR are shown in Tab. 5.3 for all extremities. In Fig. 5.6, the SAR 

distributions are provided in two orientations for each joint. The most critical aspect 

for all joints was the localized SAR (10 g-averaged), and locations of highest RF 

deposition were close to the coil clusters, i.e. in the skin and subcutaneous fat. For 

imaging the shoulder and elbow, no significant exposure of the head could be 

observed. 

Fig. 5.3: Noise correlation matrix 
(left: measured, right: calculated 
from simulation). Self-correlation of 
the elements along the diagonal of 
the matrix has been normalized to 
0 dB. The average noise coupling 
between individual elements in the 
coil remained low, with a mean 
coupling of -18.7 dB for the 
measurement. 
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Fig. 5.4: Validation of the cable traps. Shown are 500 mm field-of-view images 
obtained with gradient (left) and spin echo images (right). The dashed line indicates 
the dimension of the phantom with one coil array placed under its upper half (dotted 
line), while the arrows show the routing of the cables along the lower half of the 
phantom. No effects on signal homogeneity and hence common-mode currents were 
visible. 
 
 

Slice 
position 

Measurement 
max. B1

+ [µT] 
Simulation 

max. B1
+ [µT] 

Difference  
[%] 

right, 1 cm 17.1 17.8  4.1 
right, 2 cm 11.6  12.0  3.4 
right, 3 cm 8.1  8.6  6.2 
left, 1 cm 15.5  16.3  5.2 
left, 2 cm 10.5  11.2  6.7 
left, 3 cm 7.8  8.2  5.1 

 
Tab. 5.2: Comparison of absolute values of B1

+ between measurement and FDTD 
simulation for validation of the coil model. Given are the values for maximum B1

+ at 
defined planes on both sides (i.e., for each coil cluster) within the phantom. 
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Fig. 5.5: To validate the coil model used in the numerical simulation, measured B1

+ 
maps (left) were compared with simulated B1

+ maps (right) regarding field distribution 
and maximum B1

+ values for three sagittal planes 1 cm (upper row), 2 cm (middle 
row), and 3 cm (lower row) inside the phantom. The planes are shown exemplarily for 
one side only. 
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Fig. 5.6: For each joint the localized SAR (10 g-averaged) has been calculated using 
the Virtual Family human body model “Duke”. Care was taken to align the coil model 
to the anatomy similar to the real imaging case as well as to include the posture of 
the patient (in B, for example). The SAR distribution in two orientations is shown in 
each case. For scaling, the reference point of 0 dB is given in W/kg in the images. 
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Anatomy Pin [W] 
Shoulder 6.0 
Elbow 3.9 
Wrist 2.5 
Knee 9.0 
Ankle 7.2 
 
 
 
 

In Vivo Study 
The multi-purpose coil was tested in vivo for imaging various joints. To judge 

the performance of the RF coil for this variability of applications, maps of the B1
+ field 

as well as the corresponding flip angle distribution were acquired in vivo and 

compared to anatomic MEDIC images (Fig. 5.7). The highest mean values of B1
+ per 

unit peak power were measured for the smaller joints: wrist (1.58 ± 0.19 µT/√W), 

ankle (1.02 ± 0.21 µT/√W), and elbow (0.85 ± 0.11 µT/√W), while the larger joints 

rendered slightly lower values: knee (0.76 ± 0.20 µT/√W) and shoulder (0.70 ± 0.20 

µT/√W). Similarly, in the wrist the flip angle distribution was much more 

homogeneous while a strong drop-off was found in the center of the knee. The 

anatomical images correspond very well with the maps with regards to homogeneity 

and penetration depth. 

Using typical clinical sequences, the shoulder joint could be imaged in vivo 

with full coverage with a 3D-DESS sequence with 0.35 x 0.35 x 1.5 mm3 resolution 

(Fig. 5.8A) revealing a good excitation over a 180 mm field-of-view in 6:15 min. Fine 

anatomic details such as labrum and cartilage could be depicted. In Fig. 5.8B and 

8C, MEDIC and PD-weighted TSE images of the elbow joint are shown. Due to the 

high spatial resolution, fascicles of the median nerve could be rendered clearly (Fig. 

5.8B), which is also shown in the axial wrist image in Fig. 5.8D. In a coronal 

orientation (Fig. 5.8E), branching of the median nerve bundles could be depicted with 

great detail using a DESS sequence with water excitation. Also note the good 

suppression of osseous fat in the image. A ganglion appears hyperintense in the T2-

weighted STIR image of a wrist (Fig. 5.8F). Additionally, MRI of the ankle performed 

Tab. 5.3: Maximum permitted input power (time-averaged) 
Pin in Watts calculated from numerical simulations for 
different joints for which the localized (10 g-averaged) SAR 
complies with the limit of 20 W/kg given in the safety 
guidelines. Given is the total RF power at the coil plug, which 
is equally split to all coil elements. 
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very well as shown in the PD-weighted TSE image (Fig. 5.8G), rendering excellent 

contrast between peritendineal hyperintense fluid and tendon. 
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Fig. 5.7: For each joint, flip angle distribution (left column, left scale), B1

+ per unit 

peak power (left column, right scale), and anatomic MEDIC image (right column) 

were compared. Maximum B1
+ per unit power values were 2.3 µT/√W (shoulder), 

2.0 µT/√W (elbow), 3.0 µT/√W (wrist), 2.7 µT/√W (knee), and 2.8 µT/√W (ankle). 



112 
 

 

Fig. 5.8: In vivo images. In (A) a DESS image of the shoulder joint is given, rendering 
fine anatomic details such as cartilage and labrum (arrow, magnification). Fascicles 
of the median nerve (arrows) are shown in the MEDIC images of the elbow (B, and 
magnification) and wrist (D), while the branching of median nerve bundles (arrows) 
can be appreciated in the coronal DESS image in (E). In (C), a PD-weighted TSE 
image of the elbow reflects the potential for cartilage imaging (arrow, magnification). 
A ganglion appears hyperintense in the coronal STIR image of a wrist (F, arrow). An 
axial, PD-weighted TSE image of an ankle renders excellent contrast between 
peritendineal hyperintense fluid and tendon (G, arrow). 
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5.4 Discussion  
An eight-channel multi-purpose RF coil for high-resolution in vivo MR imaging 

of the musculoskeletal system at 7 T has been developed and successfully tested. 

The design of two coil clusters allowed easy positioning of the RF coil for imaging 

various joints. Although an individually-tuned coil might achieve slightly better image 

quality, a fixed-tuned design was chosen since it is not only easier to handle by a 

radiographer and saves time for setup, but it is also more robust and more 

acceptable to a patient because of the reduced examination time. 

The presented RF coil was connected to an 8 x 1 kW RF power amplifier via 

an add-on RF shimming system 37 and a multi-channel SAR prediction and online 

monitoring system 38, which also allows the user to perform multi-element transmit 

applications, such as Transmit SENSE 39-40 or RF shimming 41-42 with this coil. 

However, if the coil is used with the described 180° phase shift only, power splitters 

can be integrated into the transmit path, which would allow the use of a standard 

combined transmit line from an RF power amplifier as well as the integrated SAR 

supervision of the MR system. Further optimization of the coil’s performance with 

regard to SAR or B1
+ homogeneity in a certain region of interest might be achievable 

with RF shimming. However, this has not been shown in this work, since with the 

fixed phase settings described here, which were found to be well-suited for general 

imaging of the joints, the RF coil is principally transferable to any 7T MR system.  

A bottle was filled with tissue-simulating liquid and used for a single tuning and 

matching procedure. The comparison of S-parameters obtained in this set-up with 

the coil loaded with a human wrist rendered similar results, and only slightly different 

results were obtained with larger loads such as elbow and shoulder joints, indicating 

that the coil is relatively insensitive to different loads. Reflection and isolation of the 

individual elements were found to be sufficient: less than 3% of the input power will 

be reflected at the port and less than 2% of the transmit power will be coupled into 

neighboring elements.  

Measurements of the g-factors as a function of different acceleration factors 

rendered adequate image quality that was not compromised by amplified noise and 

reconstruction artifacts for an acceleration factor of 1.8 along the anterior-posterior 
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direction. The performance of the RF coil for parallel imaging is determined largely by 

the arrangement of elements, i.e., the geometrical overlap. Due to the shift between 

the two coil rows, the sensitivities of the coil elements are further disjoint along the 

anterior-posterior direction, resulting in a lower g-factor compared to measurements 

with phase encoding along head-feet. Other techniques for decoupling by inserting 

capacitors or inductors between neighboring coils 43-46 may be more advantageous 

for parallel imaging 47. However, SAR may be increased around these lumped 

elements, so that this design strategy was not chosen for the combined 

transmit/receive multi-purpose coil. 

 SAR scales approximately with the B0 field strength squared and becomes a 

non-negligible, critical factor for high-field MRI. Hence, an intensive compliance test 

with regard to patient safety is obligatory for a RF transmit coil at 7 T. First, the coil 

model used in the numerical simulations needs to be validated in order to validate the 

SAR calculations. Since the cables showed no effect on the image homogeneity in 

large FOV images, the cable traps could be safely omitted from the simulation. A very 

good match between measurement and simulation over different positions within a 

phantom indicated a satisfactory coil model (close to reality both qualitatively and 

quantitatively) for the performed SAR calculations. The absolute values from the 

simulation were systematically higher than the measured values (Tab. 5.2), which 

can be explained with coil losses, for example at capacitors or connectors, which 

were not accounted for in the simulation; this overestimation provides an additional, 

albeit minor, safety margin. For the numerical simulations, a member of the Virtual 

Family 35 was chosen, since these datasets were obtained from an actual MRI 

experiment, which facilitates an exact and realistic positioning of the coil as well as 

adaption of the posture of the body model. This is of critical importance, as 

asymmetric loading of the elements can have an effect on the SAR distribution. 

Furthermore, the human body model was modified so that the arm was outstretched 

over the head and possible effects of the unshielded coil on the head could be 

detected. No exposure of the head was visible in Fig. 5.6B, which would have 

otherwise resulted in only 10 W/kg 10 g-averaged-SAR for compliance with the IEC 

guidelines 36. Hence, with the presented compliance test, reliable 3-dimensional 
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information could be obtained. However, further safety considerations include 

attention to deviation of the coil drive compared to the simulation or a failure of 

elements which could lead to dangerous SAR focusing 48. These concerns were 

addressed by implementing the described phase shift between the elements directly 

on the elements as well as with a multi-channel SAR supervision and monitoring 

software 38. 

The performance of the multi-purpose coil was evaluated in vivo. The 

quantitative B1
+ measurements yielded high B1

+ values per unit peak power and a 

fairly homogeneous excitation for smaller joints (wrist, ankle, and elbow) where the 

two coil clusters were closest to each other. For larger joints, shoulder and especially 

knee, where the coil clusters were farther apart, a stronger B1
+ and hence flip angle 

variation was observed, which reflects the limits in the penetration depth and transmit 

field of view of this RF coil. However, for the shoulder, most of the joint could be 

imaged with adequate quality. Given a typical pulse length of 2 ms, 3 µT are needed 

for a 90° excitation. This B1
+ amplitude could be achieved for all joints at the location 

of maximum B1
+ with 1-2 W peak power, whereas to raise the mean B1

+ to 3 µT, 4-16 

W peak power were needed. Qualitatively, overall good image quality could be 

obtained with the multi-purpose coil, as shown in Fig. 5.8. Not only gradient echo but 

also typical clinical and SAR-intensive sequences such as STIR and TSE, which are 

most challenging at 7 T 15, 23, performed well. Imaging of small structures (labrum) 

and peripheral nerves could be demonstrated, which reflects the high spatial 

resolution as well as high tissue contrast and, hence, potential for further clinical 

studies. 

In a recent study, Chang et al. 16 presented high-resolution imaging of the wrist 

with a self-developed RF coil 49. The coil was also made of loop elements, but the 

design differs from the coil presented here since the transmit and receive paths were 

separate: four transmit channels, driven in a CP+ mode, and eight receive channels, 

with all electronics (power splitters, preamplifiers, etc.) placed directly at the coil 

resulting in a rather bulky housing. Furthermore, they chose a coil geometry in which 

the wrist can be placed between two curved “clamshell” sections, which could be 

advantageous for a more homogeneous transmit field in this joint but restricts 



116 
 

application to other joints. Chang et al. presented a thorough investigation of the coil 

performance regarding parallel acceleration and its effect on contrast-to-noise ratio 

and image quality. The coil performance with regard to the g-factor was similar to the 

coil concept presented here. 

 

In conclusion, a multi-purpose RF coil for MRI of the musculoskeletal system 

at 7 T has been presented, which, to our knowledge, allows for the first time high-

resolution imaging of all major joints, especially of the thus far neglected elbow and 

shoulder joints. The performance of the RF coil was demonstrated with an extensive 

coil characterization protocol as well as with in vivo images. To exploit the full 

potential of 7 T high field MRI for musculoskeletal imaging and determine its clinical 

impact, further studies will of course need to be performed. 
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Chapter 6  Summary 

To date, the 7 T magnetic resonance imaging (MRI) scanner remains a pure 

research system and there is still a long way ahead till full clinical integration. Most 

examinations are performed in the brain where technical limitations and challenges 

are minimal compared to other parts of the human body. Key challenges are the 

absence of a body transmit radiofrequency (RF) coil as well as of dedicated RF coils 

in general, short RF wavelengths of the excitation field in the order of the dimensions 

of a human body leading to signal inhomogeneities, and severe limitations with 

respect to the specific absorption rate. They all result in a strong need for RF 

engineering and sequence optimization to explore the potential of MRI at 7 T, and to 

pave the way for its future clinical application. In this thesis, high-resolution MRI with 

a rather small field-of-view (FOV) in the head and neck region (parotid gland/duct 

and carotid arteries), and of the musculoskeletal system as well as with a very large 

FOV in the abdomen (spine) have been presented. Therefore, a variety of RF coils 

were used: from a commercially available single-loop coil to novel, specially 

developed phased array coils each consisting of eight loop elements. Methods to 

thoroughly characterize and test the developed RF coils were presented, including 

numerical simulations, bench and MRI measurements. Characterization with respect 

to performance for parallel acquisition techniques and an extensive compliance 

testing for patient safety were described in detail. All aspects of the engineering part, 

from design to optimization, and finally, to the in vivo application in volunteers and 

patients were covered. Since clinical applicability has always been the purpose, 

optimized imaging protocols along with a discussion on the clinical relevance was 

included in each study. Furthermore, for MRI of the parotid gland and duct 1.5 T and 

7 T in vivo images were compared both quantitatively (signal- and contrast-to-noise 

ratio; SNR, CNR) and qualitatively (overall image quality and differentiability of 

various tissue). 

The developed prototype coils were made of loop elements and used as 

combined transmit and receive RF arrays. Loop elements are known for their good 

SNR performance and can be found in most commercial coils for MR systems 
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ranging from 1.5 T to 7 T field strength. On the other hand, transmission line 

elements, for example, provide better transmit capabilities and can be found mainly 

in prototype coils used for abdominal imaging at 7 T. When developing novel RF coils 

for a first-time application at 7 T a compromise between receive and transmit parts 

has to be made, of course. Further optimization may be achieved by separating 

receive and transmit elements, and by following a combined approach which uses 

loop elements for reception and stripline elements for transmission. The presented 

RF coils and studies may serve as a basis for further developments in RF 

engineering and ultra-high field MR imaging at 7 T. 

In conclusion, this work not only presents new RF loop coils and guidance for 

their characterization and testing but reveals potential clinical applicability of 7 T MRI 

outside the brain. The presented RF loop coils widely expand the options for clinical 

research at 7 T and advance the integration of this technology in a clinical setting. 
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Chapter 7  Samenvatting 

Tot op de dag van vandaag is de 7 Tesla kernspin resonantie scanner (MRI) 

puur een onderzoeksapparaat gebleven en is de weg richting volledige integratie in 

de kliniek nog lang. Huidige onderzoeken zijn meestal beperkt tot de hersenen waar 

de technische beperkingen en problemen minimaal zijn vergeleken met de rest van 

het menselijk lichaam. De grootste uitdagingen zijn (i) de afwezigheid van 

radiofrequente (RF) zendspoelen die het hele lichaam beslaan of, algemener gezien, 

zend/ontvangst spoelen die juist zeer specifiek zijn toegespitst op één bepaald deel 

van het lichaam, (ii) de korte golflengte van het radiofrequente veld die van dezelfde 

orde van grootte is als de afmetingen van het lichaam zelf wat leidt tot een 

inhomogeen signaal en (iii) zware beperkingen wat betreft de specifieke absorptie 

ratio (SAR). Hierdoor zijn er ontwikkelingen en optimalisaties nodig op het gebied 

van puls sequenties en RF om de volledige kracht van 7 T MRI te kunnen benutten 

en de weg vrij te maken voor toekomstig gebruik in de kliniek. Dit proefschrift bevat 

studies met hoge resolutie gecombineerd met een klein blikveld (FOV) gefocust op 

het hoofd/hals gebied  alsmede op het spier/skelet systeem maar ook met een groot 

FOV over het abdomen (ruggengraat). Om dit te bereiken is een breed scala aan RF 

spoelen gebruikt: van commercieel verkrijgbare spoelen bestaande uit één enkele 

zogeheten ‘loop’, tot nieuwe speciaal ontwikkelde, zogeheten ‘phased-array’ spoelen 

bestaande uit acht loops. Methoden om de ontwikkelde spoelen grondig te 

karakteriseren en testen zijn hier gepresenteerd, waaronder numerieke simulaties en 

metingen in test opstellingen en in de MRI scanner. De prestaties op het gebied van 

parallelle acquisitie zijn gekarakteriseerd en uitgebreide tests met betrekking tot 

veiligheid van de patiënt zijn gedetailleerd beschreven. Alle aspecten van het maken 

van spoelen, van ontwerp tot optimalisatie en uiteindelijk de in vivo toepassing op 

vrijwilligers en patiënten zijn behandeld. Aangezien klinische toepasbaarheid altijd 

het doel is geweest, is elke studie voorzien van geoptimaliseerde protocollen voor de 

kliniek en een discussie van de klinische relevantie. Ook zijn er in vivo 1,5 T en 7 T 

beelden van de speeksel klier gemaakt die zowel kwantitatief (signaal ruis 
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verhouding; SNR, CNR) als kwalitatief (algehele beeldkwaliteit en 

onderscheidbaarheid van verschillende weefsels) zijn vergeleken. 

De ontwikkelde prototype spoelen werden opgebouwd uit loop-elementen en gebruikt 

als gecombineerde zend and ontvangst RF spoelen. Loop-elementen staan bekend 

om hun goede SNR prestaties en worden gebruikt in de meeste commercieel 

verkrijgbare spoelen voor MR systemen variërend van 1,5 T tot 7 T veldsterkte. Aan 

de andere kant zijn er echter bijvoorbeeld ook transmissielijn-elementen, die betere 

zendeigenschappen hebben en veelal gebruikt worden in prototype 7 T spoelen voor 

het abdomen. Natuurlijk moet er bij het voor het eerst ontwikkelen van nieuwe RF 

spoelen voor toepassingen in 7 T MRI een compromis worden gemaakt tussen zend 

en ontvangst gedeeltes. Verdere optimalisatie kan worden bereikt door het zend en 

ontvangst gedeelte te scheiden en transmissielijn-elementen te gebruiken voor het 

zenden en loop-elementen voor de ontvangst. De hier gepresenteerde RF spoelen 

en studies kunnen als basis dienen voor verdere ontwikkelingen in RF techniek en 

ultra-hoog veld (7 T) MRI. 

Concluderend, dit werk bevat niet alleen nieuwe RF spoel ontwerpen en een 

beschrijving van hoe deze te karakteriseren en testen maar laat ook de potentiële 

klinische toepasbaarheid zien van 7 T MRI buiten het brein. De hier gepresenteerde 

RF spoelen verbreden de mogelijkheden van klinisch onderzoek op 7 T en helpen de 

integratie van deze technologie in de kliniek een stap vooruit. 
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